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Abstract

Over the past decade, fisheries management efforts have placed increased emphasis on ecosystem-

based management, where the interactions between a target stock species and its physical and

biological environment are considered in addition to sustainability of the stock itself. At the same

time, global-scale climate models that historically focused only on physical and biogeochemical vari-

ables are increasingly incorporating biological variables. With these shifts, the historical separation

between climate modeling and fisheries modeling is closing, with increased interest in the concept of

end-to-end models, i.e. models that incorporate dynamics from physics to top predators

In this dissertation, I develop a modeling framework that fully couples a one-dimensional physical

mixed layer model, a biogeochemical model, and an upper trophic level fisheries food web model.

I present a thorough description of the model itself, as well as an ensemble-based parameterization

process that allows the model to incorporate the high level of uncertainty associated with many

upper trophic level predator-prey processes. Through a series of model architecture experiments, I

demonstrate that the use of a consistent functional response for all predator-prey interactions, as

well as the use of density-dependent mortality rates for planktonic functional groups, are important

factors in reproducing annual and seasonal observations.

Following the development and validation of the end-to-end ecosystem model, I use the model

to simulate the response of an ecosystem to a bottom-up perturbation, namely an increase in net

primary production due to alleviation of micronutrient limitation. I also look at the impact of non-

predatory mortality, one of the least-constrained model processes, on the energy flow through the

system. We find that the relative changes in production at higher trophic levels are amplified under

density-independent non-predatory mortality assumptions but damped under density-dependent as-

sumptions. However, the high parameter uncertainty masks this effect in predicted values for most

functional groups.

Overall, the model developed in this dissertation addresses a growing need to thoroughly diagnose

the behavior of, and quantify the uncertainty associated with, complex ecosystem models that bridge

physical, biological, and socio-economic boundaries. Such detailed dynamical characterization of

model behavior is essential before ecosystem models can be applied to management applications.
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CHAPTER 1

Introduction

1.1 An overview of end-to-end ecosystem models

End-to-end ecosystem models can be broadly defined as models that attempt to represent the entirety

of a marine ecosystem, including both the abiotic and biotic components: physical dynamics of both

atmosphere and ocean, ocean biogeochemistry, lower and upper trophic level biology, and human

influences (fisheries, recreation, coastal development, etc.). These models have become more and

more prevalent over the past few decades, as the questions posed by both the biogeochemical and

fisheries communities have become more intertwined.

Physical and biogeochemical global climate models historically focused only on the biological

components of an ecosystem necessary to capture global-scale patterns in chemical components, such

uptake and demineralization of nutrients by phytoplankton; often these effects were only modeled

implicitly, rather than through explicit representations of the phytoplankton and their predators.

However, as climate change studies have begun to elucidate a variety of potential long-term changes

in biologically influential physical and chemical properties, such as temperature and pH, the models

have moved towards quantifying the effect on biology.

At the other end of the food web, fisheries models have also been moving towards a more

ecosystem-based perspective. Historically, the models used to manage fish stocks focused only on the

growth rates and recruitment of a single target species, in isolation from both other target species in

the region and the ecosystem as a whole (Beverton & Holt, 1957). However, with the decline of many

global fisheries in recent decades, managers have begun to recognize that fish stocks are often vul-

nerable to changes in their physical environment as well as population shifts elsewhere in their food
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web, and the current management recommendations have been shifting away from this single-species

model, instead emphasizing ecosystem-based management (Pikitch et al. , 2004; Larkin, 1996). This

term refers to management policies that recognize the many interactions between the components

of an ecosystem.

The changes within both the biogeochemical and fisheries communities have led to a prolifera-

tion of end-to-end ecosystem model frameworks being introduced in the past decade (Fulton, 2010;

Travers et al. , 2007). They vary widely in the portions of the ecosystem that they encompass,

as well as the techniques used to resolve the many processes that can be important to ecosystem

function. This dissertation presents another such model, which combines a physical water column

model, a traditional biogeochemical/lower trophic level model, and a fisheries-style food web model,

the latter of which encompasses species ranging from phytoplankton to top predators, such as birds

and marine mammals. Its unique contribution to the growing collection of end-to-end models in-

cludes a detailed analysis of the various components and processes inherent within each of these

individual model types, the assumptions associated with each of these processes, and the ways in

which those assumptions may be altered when the model components are connected to each other

in a fully-coupled (i.e. two-way) manner.

1.2 The Pacific Eastern Subarctic Gyre region

While the modeling framework developed within this dissertation is intended to be generic to any

regional ecosystem, parameterization needs required that we choose a specific location for all devel-

opment. We chose to parameterize it for the Eastern Subarctic Gyre of the North Pacific, for several

reasons. This region is an important foraging ground for a variety of epipelagic species (Brodeur

et al. , 1999) and a rearing and growth area for commercially-important Pacific salmon (Aydin et al.

, 2005). The climate of this location is heavily influenced by variations in the Aleutian Low Pressure

system, resulting in decadal scale variability in physical properties such as sea surface tempera-

ture, precipitation, downwelling, and stratification (Mantua et al. , 1997; Francis et al. , 1998a).

Numerous studies have demonstrated corresponding population changes in the biology at multiple

trophic levels, including that of phytoplankton (Polovina et al. , 1995), zooplankton (Brodeur &

Ware, 1992), and salmon (Beamish & Bouillon, 1993). Finally, this area is home to a relatively

high number of both biogeochemical and fisheries datasets, making it a convenient testbed for an

end-to-end ecosystem model.
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Figure 1.1: The Eastern Subarctic gyre region is bordered by the Subarctic Current, Alaska Current,
and Alaska Stream. The dotted line shows the corresponding region as designated by the North
Pacific Marine Science Organization (PICES); much of the food web data presented later in this
thesis was compiled using this definition for the region of interest. The location of Ocean Station
Papa (OSP) is indicated by a gray dot.

The Eastern Subarctic Gyre is one of two cyclonic gyres in the north Pacific Ocean. The east-

flowing Subarctic Current separates subarctic water from the subtropical water to the south; due to

the geometry of the Aleutian Islands chain, the subarctic surface currents are recirculated into two

distinct gyre regions. The eastern gyre, which we focus on in this study, is bordered to the south

by the Subarctic Current, to the north and east by the Alaska Current, and to the northwest by

the Alaska Stream, which merges with the Subarctic current to the west of the gyre (Figure 1.1 on

page 3). This region is also commonly referred to as the Gulf of Alaska, although the identically-

named Gulf of Alaska Large Marine Ecosystem (www.lme.noaa.gov) refers to only the more coastal

communities along the northeastern edge of the gyre. For our purposes, we will be considering only

the pelagic, open ocean portion of the gyre community, and use the name Eastern Subarctic Gyre

rather than Gulf of Alaska to avoid confusion.

The regional climate is highly influenced by the Aleutian Low Pressure system, a semi-coherent

atmospheric pressure system that is situated over the gyre during the winter months. The high

winter wind speeds of around 12 m/s created by this system lead to deep mixing of the surface layer,

while in the summer months the wind speeds fall to 7 m/s and the water restratifies. Over this

seasonal cycle, the mixed layer depth varies between 90-120 m in winter to only 40 m in the summer

(Whitney & Freeland, 1999). Sea surface temperature varies between 5�C in the winter and 13�C
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in late summer, while salinity cycles between 32.7 and 32.5 in the winter and summer, respectively

(Whitney & Freeland, 1999).

Macronutrients, including both nitrate and silicate, are controlled primarily by seasonal stratifi-

cation, replenished in the winter by deep mixing and then drawn down to lower levels in the spring

and summer. However, this region is one of three high nutrient, low chlorophyll regions in the global

ocean, and macronutrients remain relatively high (8 µM NO3 and 12 µM Si(OH)4) even at their

lowest point, with primary production typically limited by the micronutrient iron (and co-limited in

winter by light). Iron is supplied to the central gyre through vertical mixing with the deep water,

delivery by mesoscale eddies from the coastal regions to the north and east, and from dust deposition

from the atmosphere, though the relative contributions of each source remain uncertain (Harrison

et al. , 2004).

Advective processes are minimal in the gyre, with heating due to synoptic-scale weather patterns

accounting for an order of magnitude more toward temperature changes than advective processes

(Denman & Miyake, 1973). In addition, analysis of the major water masses in the region indicates

similar salinity, temperature, and nutrient profiles throughout the Alaska Gyre region (north of the

Subarctic Current and excluding the shelf region) (Wong et al. , 2002). The minimal influence of

horizontal processes in this region allows us to simplify the physical model used in this study, which

also contributed to our choice of this gyre over regions with more complicated physical dynamics.

Situated in the southeastern part of the gyre at 50�N, 145�W, Ocean Station Papa has been a site

of regular physical and chemical data collection in this region for several decades. Weathership mea-

surements of temperature profiles began at this location in 1949, with more regular, reliable physical

measurements beginning on 1954 (prior to this, bathythermograph data was of poor precision and

lacked accompanying salinity data) (Whitney & Freeland, 1999). Following the discontinuing of

weather ships in 1981, measurements at this site were taken over by the Institute for Ocean Sciences

in British Columbia, Canada. Measurements have continued at this site, and along the adjacent

Line P stations, with data collected 2-6 times per year. The dataset now include measurements

from a combination of CTD-based instruments, deep rosette water samples, and vertical mesh tows,

and encompass a variety of hydrographic and biogeochemical variables.

The Eastern subarctic gyre region plays a key role in the life cycle of several commercially

important fish species, most notably Pacific salmon. Salmon are anadromous species who spend

their adult lives in saltwater but migrate upriver to freshwater sites to spawn. Pacific salmon

from rivers ranging from the United States and Canada to Russia and Japan all migrate to the

subarctic gyres, where they spend 1-5 years in the open ocean growing to maturity and putting on
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the majority of their weight. A variety of studies have shown correlations between variability in

salmon populations and variability in oceanographic and decadal-scale variability in environmental

forcings (Mantua et al. , 1997; Beamish & Bouillon, 1993; Beamish et al. , 1999; Francis et al. ,

1998b).

The model developed within this dissertation is intended to look closely at the processes that

connect environmental variability and biogeochemistry of a region to the lower and upper trophic

level species that rely on the region for food and habitat. The Pacific Eastern Subarctic Gyre presents

an intersection of decadal-scale environmental variability with a commercially-important fisheries

food web, and provides a relatively high number of both biogeochemical and fisheries datasets over

a period of several decades, making it a convenient region to develop a model of this sort.

1.3 Dissertation outline

Including the introduction, this dissertation consists of five chapters, with two additional appendices.

In Chapter 2, we describe the development of the food web model used to represent the many

species that inhabit, either continuously or as part of their migrations, our target region. We focus

on distilling the necessary components to be considered in our ecosystem model such that it balances

the need to incorporate the many complex interactions within the ecosystem while maintaining the

simplicity needed for meaningful analysis. We also describe a method for quantifying the high

observational uncertainty associated with the many ecosystem parameters included in a model of

this complexity.

In Chapter 3, we move to the development of our full end-to-end ecosystem modeling framework,

which couples a one-dimensional physical mixed layer model, a biogeochemical model, and an upper

trophic level fisheries model. Through a series of model architecture experiments, we demonstrate

that the use of a consistent functional response for all predator-prey interactions, as well as the

use of density-dependent mortality rates for planktonic functional groups, are important factors in

reproducing annual and seasonal observations. We present the results of a 50-year climatological

simulation, which demonstrates that under contemporary physical forcing, the model is capable of

reproducing long-term seasonal dynamics in primary production and biogeochemical cycling, while

maintaining steady-state coexistence of upper trophic level functional groups at levels consistent

with observations.

In Chapter 4, we attempt to quantify both the magnitude and the uncertainty of the response

of the end-to-end ecosystem model to a bottom-up perturbation, namely an increase in net primary
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production due to alleviation of micronutrient limitation. The impact of non-predatory mortality,

a process whose magnitude and form remains largely unknown, on the energy flow through the

system is quantified and drivers of the amplification of primary productivity perturbations are diag-

nosed. We find that the relative changes in production at higher trophic levels are amplified under

density-independent non-predatory mortality assumptions but damped under density-dependent as-

sumptions. However, the high parameter uncertainty masks this effect in predicted values for most

functional groups.

Chapter 5 presents a brief summary of the work, and offers some thoughts on applying complex

end-to-end models to management applications.

Appendix A gives a detailed overview of the process equations underlying the physical and

biological components of the end-to-end ecosystem model. It also provides a list of the many input

variables and datasets used to run the simulations in Chapters 3 and 4.

Finally, Appendix B provides a through documentation of the software developed as part of this

dissertation. It provides instructions for installing the code, running simulations, and analyzing

output. Technical documentation for all functions included in the package is also provided here for

reference.

1.3.1 Publication and coauthor contributions

Chapter 3 is in large part a reproduction of Kearney et al. (2012), published in Ecological Modelling

in 2012. A few changes have been made to the text of the introduction and methods sections to

avoid redundancy with material presented more fully in this thesis in Chapters 1 and 2. In addition,

Appendix A of this thesis includes much of the same text as the appendix in Kearney et al. (2012).

I am the lead author of this publication; I developed the model, designed and implemented the

simulations, wrote the text, and prepared all figures and tables for the manuscript. Coauthors Jorge

Sarmiento (my graduate advisor at Princeton University) and Charlie Stock (NOAA’s Geophysical

Fluid Dynamics Laboratory, Princeton, NJ) provided invaluable advice and feedback throughout the

model development and writing process. In addition, Charlie Stock was responsible for development

of the original version of the one-dimensional physical model that underlies the final version of the

ecosystem model described in this article. Kerim Aydin (NOAA’s Alaska Fisheries Science Center,

Seattle, WA) generously hosted me at AFSC for two weeks to study his version of the Ecosim code,

and allowed me to incorporate the ensemble parameterization concept from his model into my own.
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Material from Chapter 4 will be prepared for submission as an article following the completion

of this dissertation. I will be lead author, with Charlie Stock and Jorge Sarmiento as coauthors for

their advisory roles. The new iron dynamics introduced to the model in that chapter were developed

primarily by Charlie Stock for his COBALT model (Stock et al. , n.d.), with some modification by

myself so that they could be applied in a one-dimensional context. I was responsible for the remaining

work, including further code development, running and analyzing simulations, and preparation of

text, figures, and tables.

For consistency with the above sections, I use the first person plural throughout this thesis.
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CHAPTER 2

Ecopath food web models for the Eastern Subarctic Pacific

The Ecopath with Ecosim model has become a widely-used tool in fisheries science for constructing

food web models; the official website for the software (www.ecopath.org) lists over 400 publica-

tions based on the this modeling technique to date. The Ecopath idea, originally described by

Polovina (1984) and later developed into a more comprehensive software package with additional

components for time-dynamic (Ecosim) and spatially-explicit (Ecospace) simulations (Christensen

& Walters, 2004), uses the concept of ecosystem mass balance in order to consolidate a wide range

of fisheries-based data into a coherent picture of biomass or energy fluxes between various ecosys-

tem components. The mass-balance model consists of a set of linear equations describing the flux

of biomass into and out of each functional group in the food web. Depending on the focus of an

individual study, functional groups can refer to specific species or more general groups of species

that share certain growth and diet characteristics, as well as detrital pools and fishing fleets or gear

types associated with the ecosystem. The primary equation for the Ecopath model states that fluxes

into a functional group must balance fluxes out of the group or contribute to a known accumulation

of biomass:
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(2.1)

where i refers to an individual functional group and j refers to the functional groups that prey

on it. Table 2.1 on page 9 describes these variables and their typical data sources. Note that the
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Table 2.1: Definitions and common sources for the variables in the Ecopath master equation (repli-
cated from Table 2, Aydin et al. , 2003). For units, M = mass, A = area, and T = time. The
production/biomass ratio is referred to interchangeably in Ecopath-related literature as P/B and
PB, with the latter being the variable name used internally in code and occasionally in the docu-
mentation manual for the software. Likewise, consumption/biomass is referred to as both Q/B and
QB.

Group Includes Details

B Biomass MA�1 Survey estimates, sampling programs,
stock assessments

P/B (PB) Production per unit biomass T�1 Mortality rates, growth rates, bioener-
getics models

Q/B (QB) Consumption per unit biomass T�1 Bioenergetics models, gut content anal-
ysis

DC Diet composition, i.e. fraction of predator’s
diet composed of each prey

Gut content analysis

Y Fisheries catch MA�1T�1 Fisheries statistics

BA Biomass accumulation MA�1T�1 Biomass trend data

E Net migration MA�1T�1 Migration studies

EE Ecotrophic efficiency, i.e. the fraction of a
group’s production that is passed up the food
chain. A value of 1 implies that all loss is due
to predation; a value of 0 implies that the
group has no predators and all loss is due to
non-predatory processes, such as old age or
disease.

Estimated by Ecopath or set at a stan-
dard level to estimate biomass

GE Gross growth efficiency. GE = P/Q

GS Fraction of ingested food that is not assimi-
lated.

inclusion of the biomass accumulation term (BA) means that the system does not necessarily need

to be in steady state during the period from which data was collected, though often the assumption

of stability is made to account for the use of datasets that are not completely contemporaneous

(e.g. in this study, data was collected over a period of 10 years). By incorporating as much data

as possible for the various groups, the Ecopath mass-balance algorithm is able to create a snapshot

of the standing stock of biomass pools and the network of fluxes between these pools such that all

mass within the ecosystem is accounted for in a manner consistent with the observations available

for the system.

Because of its association with the Ecopath with Ecosim software package, the term “Ecopath

model” in the literature is often used to refer not only to the mass-balance checks on input data but

also to a suite of time-dynamic predictions of ecosystem changes resulting from different fisheries

management strategies that can be run using the EwE software. However, in this thesis, we use

the term “Ecopath model” in its original strict sense to refer to a specific set of population data

(as listed in Tables A.3 through A.12) that can be run through the Ecopath algorithm to fill in
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any missing values and verify that all numbers meet certain balance criteria. In the next chapter,

these Ecopath models will be used to calculate parameter constraints for the fully coupled model.

Therefore, the first step in developing an end-to-end ecosystem model was to construct an Ecopath

model for the Eastern Subarctic gyre region. In this chapter, we will discuss the steps we took

to create an ensemble of Ecopath models that isolate the most important trophic linkages in this

particular ecosystem and incorporate the high level of uncertainty often associated with complex

ecosystems models.

2.1 Capturing uncertainty through an intramodel ensemble

The construction of a typical Ecopath model involves the compilation of a large amount of

population-related data, including biomass, production rates, consumption rates, diet fractions,

growth efficiencies, and assimilation efficiencies for each functional group included in the model.

These data can come from a wide variety of sources, ranging from high-quality scientific surveys to

fisheries landing data, empirical relationships, and models. The uncertainty values on these numbers

can be very high, up to or beyond an order of magnitude from the point estimates, and accurate

measurement of these uncertainties is rare. To compensate for the lack of measured uncertainties,

Ecopath input data can be assigned pedigree values based on origin. The pedigree values range

from 0 to 1, and correspond to a confidence interval of the point estimate as a fraction of that point

estimate. Higher accuracy data, such as that collected by a dedicated stock assessment survey in

the region and at the time of interest, is assigned a low pedigree value (e.g. 10% uncertainty), while

data collected via less accurate methods or estimated based on other ecosystems or models receive

higher pedigree values.

Although the inclusion of pedigree values is relatively common when documenting Ecopath mod-

els, the uncertainty information is rarely incorporated into the predicted results deriving from these

models (Christensen et al. , 2005). However, the wide range of uncertainty of some input values

means that often a single simulation based on the mean inputs does not capture the true range of

possible outcomes; in many cases even the direction of change in one functional group as a result of

a perturbation to a different group cannot be fully ascertained when accounting for the entire input

range. Particularly when coupling a predator/prey model to a seasonally-varying biogeochemical

model, we found that the parameters derived from a single mean Ecopath model would not necessar-

ily lead to output that represented the mean behavior, with small numerical differences occasionally

leading to outlier-type results. Rather than constantly readjusting the hundreds of parameters to
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find a single set of perfectly-tuned numbers representative of the entire ecosystem, we instead de-

cided to use an ensemble of Ecopath models to derive our parameters and thereby encompass as

much of the potential parameter space as possible.

Following the ideas of Aydin et al. (2007), rather than start with a single set of input data

for our Ecopath model, we started with parameter ranges. For biomass, production/biomass, and

consumption/biomass values, points were chosen from a uniform distribution ranging from the in-

terval x ± p ⇤ x, where x is the point estimate for the parameter and p is the respective pedigree

value. Diet fraction values were also chosen from uniform distributions, with the same pedigree value

applied to all prey components, but then renormalized such that each predator’s diet still summed

to 1, resulting in normal distributions across ensemble members for each predator-prey diet fraction

value. Growth efficiencies, ecotrophic efficiencies, and assimilation efficiency data remained as point

values, as these inputs are almost always rough estimates rather than measured values and are rarely

published with pedigree data.

Once a single set of input data was chosen from these pedigree-derived ranges, we ran the Ecopath

algorithm to test for balance. Balance within an Ecopath model is diagnosed via the ecotrophic

efficiency (EE) values for each group, defined as the fraction of net group production that is passed

up the food chain to predators. An ecotrophic efficiency value outside the range of 0-1 implies that

the system requires an outside sink or source in order to account for all biomass fluxes, and results

when input data contradict each other (for example, a predator has a consumption rate that cannot

be sustained by the known biomass of its prey). By repeating the process of choosing parameters,

testing for balance, and keeping only those models that satisfied the balance criteria, we were able

to construct an ensemble of Ecopath food web models that incorporate the potential measurement

uncertainty.

2.2 Determining primary energy pathways in a food web

When constructing the Ecopath models for the Eastern Subarctic Pacific ecosystem, we began with

a previously published Ecopath model that was developed through series of workshops by the the

North Pacific Marine Science Organization (PICES) Basin Ecosystem (BASS) Task Team (Aydin

et al. , 2003); this food web included 48 functional groups, so we refer to it hereafter as the Aydin-48

model. This model, like many Ecopath models developed for fisheries management applications,

included a large number of functional groups representing specific managed stocks that from an

ecological standpoint occupy very similar niches in the food web. While the resolution of these
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stocks can be useful, and sometimes necessary, for fisheries management applications, our study is

focused instead on the trophic interactions throughout the food web, and in distilling the processes

that can affect the propagation of energy from primary producers to higher levels in the food web; for

this purpose, a simpler web that emphasizes only the most important energy pathways is ideal. In

addition, while the model framework introduced in the following chapter can in theory be adapted

to include complex food webs with a very large number of functional groups and predator-prey

interactions, practical limitations such as simulation time and output size favor models with fewer

state variables. To this end, we decided to try to reduce the number of functional groups in the food

web to as few as possible while still maintaining the major energy pathways through the food web.

The simplification process we developed centered on a hierarchical clustering routine. Each

of the 47 functional groups (the bacteria group was eliminated from the Aydin-48 model prior to

clustering; see Section A.2.4.1 for details) was assigned a “location” in parameter space quantified

by 96 different factors. The first 47 factors described whether a group preyed upon each other

group in the food web (1) or not (0), with the following 47 factors representing the reverse, i.e.

whether they were eaten by each other group. In earlier versions of the algorithm, we considered

using the specific diet input and predatory loss fractions associated with each feeding link, rather

than the all-or-nothing logical distinction, but found that the behavior of the clustering algorithm

was less desirable with these numbers; a group with small diet fractions spread over a large number

of prey items was more numerically similar to another group with mutually exclusive but similarly

spread out diet than to one that fed on a subset of its prey in higher quantity. While the logical

categorization of prey and predator links was able to isolate most of the energy pathways we needed,

a few unwanted links were produced between top predators with few prey items and no predators,

and primary producers with few predators and no prey groups; adding trophic level as an additional

clustering variable (factor 95) removed these unwanted links. Lastly, we added ecosystem role as a

final 96th clustering variable, categorizing each functional group as either a primary producer (0),

consumer (4), or detritus (8). The specific values for this final variable were chosen such that all

consumers would be more similar to each other than to any producer or detrital group, maintaining

the separation necessary such that the proper ecosystem processes (e.g. primary production versus

consumption of prey) could be modeled with the resulting clustered groups. The final clustering was

performed by calculating the Euclidean distance between each pair of the 47 functional groups over

the 96-dimensional clustering parameter space, then building an agglomerative hierarchical cluster

tree using single-linkage clustering. The resulting dendrogram is shown in Figure 2.1 on page 13.
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Figure 2.1: Dendrogram showing similarity between the 47 groups in the Aydin-48 Ecopath model,
based on shared predator-prey relationships, trophic level, and production level. The horizontal
axis shows the Euclidean distance between groups connected by each vertical line. The pie plots
at each junction illustrate the relative biomass of all subgroups combined at that point. Colors are
provided to distinguish between the major organism types: detritus (brown), phytoplankton (green),
zooplankton (grey), fish (purple), squid (orange), mammals (blue), and birds (red).
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To create clusters from this dendrogram, we choose a cutoff point; any pairs of groups whose

between-group distance is less than this cutoff value are combined into one. In the dendrogram,

this can be visualized by drawing a vertical line at a given cutoff value, and tracing each intersected

horizontal line to the left; if the horizontal line hits one of the clusters (junctions with pie plots), then

those groups will be combined in the resulting clustered food web. The clustering routine created a

cluster tree with 39 potential cutoff points, each of which results in a different combination of clus-

tered and unclustered groups. To determine the best cutoff point for our purposes, we began with

several diagnostics of ecosystem properties, based on those described by Link (2010b) to ensure that

ecosystem network models like Ecopath capture the expected characteristics of marine ecosystems.

At each new cutoff point, we generated new Ecopath parameter ranges. The central biomass value

for each new clustered group consisted of the sum of biomasses of the contributing subgroups. All

other applicable Ecopath parameters, including production/biomass, consumption/biomass, growth

efficiency, and ecotrophic efficiency were calculated using an average of the contributing groups’

values, weighted by biomass; a value was considered missing (to be solved for by the Ecopath algo-

rithm) only if all contributing groups were missing that value. Pedigree values were also calculated

using the biomass-weighted averages of the contributing groups. Using these new Ecopath input

parameter central values and pedigrees, we generated 39 sets of food webs, one for each potential

cutoff value, with 100 ensemble members each. We then looked at the ecosystem properties of each

of these food web sets.

The first property we looked at was the biomass distribution across trophic levels. Link (2010b)

suggested that biomass values in a marine ecosystem should span 5-7 orders of magnitude from

primary producer to top predator, and that total biomass of all groups at a particular trophic level

should decrease 5-10% (on a log scale) with each full step in trophic level. For the following analyses,

we define trophic level according to the Ecopath definition, where primary producers are placed at

trophic level one, and consumers’ trophic levels are calculated as one plus the sum of their prey’s

trophic levels, weighted by fraction of diet composed by each prey. Based on this definition, trophic

level for each group will vary slightly across ensemble members due to variations in diet composition.

We found that both the total range of biomass, as well as the change in biomass per trophic level,

were robustly maintained by our clustering algorithm up to a very high level of consolidation, only

breaking down when the number of functional groups had been reduced below seven (Figure 2.2 on

page 15) (at that point in the clustering, almost all upper trophic level species have been combined

into one “top predator” group).
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Figure 2.2: We analyzed all potential clustering levels to verify the relationships between biomass
and trophic level. The top panels show biomass (on a log scale) versus trophic level for all 39
potential food webs, with each web labeled by the cutoff value used to create the clusters. The
colored points indicate the values of individual ensemble members, color-coded by point density,
while the black points show the sum of biomass binned as indicated by the vertical dotted lines;
error bars indicate the upper and lower limits of these sums across the 100 ensemble members. The
lower panel indicates the orders of magnitude spanned by the biomass values within each food web
as well as the slope of linear fit for trophic level versus summed biomass.
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We next examined the vital rates of functional groups across trophic levels. Like biomass, these

rates are expected to decrease across trophic levels in a linear fashion (on a log scale), with lower

trophic level functional groups exhibiting higher growth rates, higher consumption rates, and shorter

lifespans than long-lived upper trophic level predators. With respect to production rates, we again

found that the slope of the production rate versus trophic level line remained relatively constant up

to a high level of consolidation, with no substantial changes until the web had been reduced to seven

groups (Figure 2.3 on page 17). We also examined the consumption rates of groups in the same

manner. However, this particular food web includes a large number of homeothermic species, which

require much higher consumption rates to maintain their metabolism than poikilothermic groups

occupying a similar trophic level. Therefore, the spectrum data for consumption rates across trophic

levels showed two linear trends in the original 47-group model (one that included the poikilothermic

fish, squid, and plankton groups, and one for the homeothermic birds and marine mammals), which

became difficult to numerically quantify across different levels of clustering as the two lines merged

together. Therefore, we chose not to use consumption rate as a metric for cluster choice.

As a final check of the ecosystem robustness across different levels of clustering, we checked to

see if each newly-formed cluster group played the same role in passing biomass to different parts of

the food web as the original unclustered groups from which they were derived. We looked at the

production fluxes into each group, and both the predatory and non-predatory losses from each group,

and determined whether the amount passing into and out of each clustered group was approximately

the same as the sum of the corresponding fluxes through its subgroups in the unclustered model. We

found that overall, the role of each clustered group in redistributing biomass remained very similar,

even when the food web was reduced to only three functional groups (Figure 2.4 on page 18).

Having verified that our clustering algorithm maintained the general trophic characteristics of

this particular ecosystem up to a very high level of consolidation, we decided to use a cutoff value

of 1.5. We felt that this level provided the computational benefits of a smaller number of functional

groups while still maintaining recognizable groupings that could be useful for the types of questions

we hope to analyze with this model. For example, a group that combines all salmon is sensible for

addressing fisheries-related inquiries, while a salmon-squid hybrid (the result of the next higher level

of clustering) becomes less practical in this context. Using this cutoff value, we reduced the food

web to 24 functional groups.
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Figure 2.3: Production/biomass ratios are an indicator of the growth rate of each functional group,
and are expected to decrease when moving from lower to higher trophic levels. As in the previous
figure, production/biomass is plotted versus trophic level for each potential food web. The lower
panel indicates the slope of the line fitted directly to the individual ensemble points (unlike biomass,
production rates are not additive across trophic levels and thus no binning was performed here).
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Figure 2.4: Comparison of fluxes into and out of each cluster, both before and after clustering. All
box-and-whisker plots indicate minimum, first quartile, median, third quartile, and maximum values
across ensembles. The red boxes show the sum of fluxes into (production) or out of (mortality) the
groups that make up a particular cluster, using the values from the 47-group unclustered model.
The blue boxes show the respective flux for the clustered group where it appears throughout the 39
potential food webs. The pie plot labels along the bottom axis correspond to those from Figure 2.1
on page 13.
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2.3 Characteristics of the Eastern Subarctic Gyre food web

Following the simplification and ensemble-generating processes detailed in the previous two sections,

we generated a 1000-member ensemble of food webs to represent the 24-group ecosystem of the

Eastern Subarctic Gyre, which will provide parameter constraints for the end-to-end model developed

in the following chapter (though due to practical limitations only 20-50 ensemble members will be

used for those simulations). The 24 functional groups encompass a wide variety of organisms,

including 1 detritus, 2 phytoplankton, 5 zooplankton, 5 fish, 1 jellyfish, 4 squid, 3 mammal, and

3 bird groups (Table 2.2 on page 20). Despite the simplification process, the food web remains

relatively complex, including 102 different predator/prey interactions (Figure 2.5 on page 21). For

an in-depth description of the functional groups and their Ecopath input parameters, see Section

A.2.4.1.

A relatively small portion of the Ecopath parameter space as defined by the pedigree-based input

ranges serves as a valid source of input parameters, with only approximately 2% of the parameter

space leading to a balanced model. Due the very high dimensionality of this parameter space, it was

not computationally possible to compute the analytical bounds of the 171-dimensional manifold that

encompasses the “balanced model” parameter space (between biomass, production rate, consumption

rate, growth efficiency, ecotrophic efficiency, assimilation rate, and diet fraction inputs, there are

202 input parameters to the mass-balance calculation for this particular ecosystem, 171 of which

include pedigree values). However, an analysis of the resulting parameters defining our 1000-member

ensemble showed only a few parameters deviated from the uniform or normal distributions they

started with after unbalanced models were eliminated (Figure 2.6 on page 22). The upper ends of

both the small and large phytoplankton biomass ranges tended to be favored by the balance; the

lower end was often too low to support the production required by the rest of the ecosystem. For

the same reason, the upper ends of several of the zooplankton groups’ consumption rate ranges were

less favored, since those higher rates could not be supported by the given phytoplankton population.

The two cannibalistic groups, particularly the neon flying squid, were pushed to the lower end of

their consumption rate and the upper end of their biomass ranges, as the positive feedback created

by them feeding on themselves easily leads to imbalance. Even within those examples, though, there

were no “empty spaces” in the range for any individual input variable.

Similarly, no strong correlations emerged between any two input parameters, with the exception

of within-predator diet fraction, which by definition must sum to one and hence will always be
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Table 2.2: The simplified food web model includes 24 functional groups, listed below along with the
picture used to identify each in the food web diagram (Figure 2.5 on page 21). The type column
indicates whether each group is classified as phytoplankton (P), zooplankton (Z), or nekton (K) in
the fully-coupled model (see 3.2.2).

Index Name Type Symbol Consolidated groups

1 Albatross K Albatross

2 Mammals and sharks K

Northern elephant seals, Northern fur seals,
Sperm whales, Dall’s porpoises, Pacific white
sided dolphins, Northern right whale dolphins,
Sharks

3 Neon flying squid K Neon flying squid

4 Orcas K Toothed whales

5 Boreal clubhook squid K Boreal clubhook squid

6 Seabirds K Skuas, Jaegars, Fulmars

7 Pomfret K Pomfret

8 Piscivorous seabirds K Shearwaters, Storm petrals, Kittiwakes, Puffins

8 Large gonatid squid K Large gonatid Squid

10 Salmon K Coho salmon, Pink salmon, Sockeye salmon,
Chum salmon, Chinook salmon, Steelhead

11 Baleen whales K Fin whales, Sei whales

12 Micronektonic squid K Micronektonic squid

13 Mesopelagic fish K Mesopelagic fish
14 Pelagic forage fish K Pelagic forage fish
15 Saury K Saury

16 Large jellyfish K Jellyfish

17 Predatory zooplankton Z
Sergestid shrimp, chaetognaths, Miscellaneous
predatory zooplankton (mainly larvaceans and
polychaetes)

18 Large zooplankton Z Euphausiids, Amphipods, Pteropods

19 Gelatinous zooplankton Z Salps, Ctenophores

20 Copepods Z Copepods

21 Microzooplankton Z Microzooplankton

22 Small phytoplankton P Small phytoplankton

23 Large phytoplankton P Large phytoplankton
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Figure 2.5: The food web used for this study incorporates 23 living functional groups. The axis
to the left indicates the trophic level of each group, following the Ecopath definition where trophic
level of a consumer is equal to 1 plus the diet-fraction-weighted average of its prey’s trophic levels.
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correlated (Figure 2.7 on page 24). Those correlations that did emerge were weak, and reflected the

same skewing towards one end of parameter space discussed in the previous paragraph. For example,

the low neon flying squid production/high neon flying squid consumption corner of parameter space is

empty, due to the cannibalism of this group, leading to a weak correlation between these parameters.

Overall, although the total input parameter space contains far more imbalanced space than balanced,

the imbalance is usually caused by the interplay of many different input variables, rather than any of

the particular input parameter ranges being implausible in and of themselves. In other words, there

are certain pairs (or small groups of three or four) of variables that will never combine to create a

balanced model, but no single value of one parameter leads to imbalance any more often than any

other.

The parameter ranges encompassed by this particular food web span several orders of magnitude.

Functional group biomasses cross over six orders of magnitude, while production rates span almost

four (Figure 2.8 on page 25), both of which reflect the typical span in a pelagic marine ecosystem

(Link, 2010b). Similarly, the transfer of biomass follows the expected pattern, with an average of

17% transfer of biomass per trophic level (Figure 2.9 on page 26), from primary producers to top

predators. This is on par with ecological theory, which suggests a transfer efficiency of approximately

10% per trophic level (May & McLean, 2007). The breakdown of fluxes into and out of each

group, including predatory consumption, production (i.e. primary production for producers, and

the product of consumption and growth efficiency for consumers), predatory mortality, and non-

predatory mortality, can be seen in Figure 2.10 on page 27. These fluxes, along with biomass, will

be used to constrain the process equations for the end-to-end model developed in the next chapter.
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Figure 2.7: Correlation analysis for all Ecopath input variables with pedigree values. The top
plot shows the Spearman’s rank correlation coefficients between each pair of input variables; this
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CHAPTER 3

Coupling planktonic ecosystem and fisheries food web models

for a pelagic ecosystem

3.1 Introduction

In the past decade, fisheries management efforts have placed increased emphasis on ecosystem-based

management, where the interactions between a target stock species and its physical and biological

environment are considered in addition to sustainability of the stock itself (e.g. Link, 2010a). At the

same time, global-scale climate models that historically focused only on physical and biogeochemical

variables are increasingly incorporating biological variables (Denman et al. , 2007). With these shifts,

the historical separation between climate modeling and fisheries modeling is closing, with increased

interest in the concept of end-to-end models, i.e. models that incorporate dynamics from physics to

top predators (Travers et al. , 2007; Fulton, 2010).

In their review of over fifty different fisheries models, Keyl & Wolff (2008) demonstrated that the

incorporation of environmental and climate variability in almost all cases increased the predictive

power of the model. They also noted that in many cases, the use of a climate index, such as the

Pacific Decadal Oscillation (PDO) or North Atlantic Oscillation (NAO), had more predictive power

than any single local environmental variable, such as sea surface temperature, due to the collective

nature of a climate index in incorporating many different physical changes. However, while climate

indices can demonstrate correlation between climate variability and ecosystem dynamics, they fail

to provide a mechanistic link between the physical and biogeochemical changes and higher trophic

level dynamics. Such mechanistic linkages are particularly essential for reliable projections of climate
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change impacts as the baseline upon which empirical relationships are based changes (Stock et al. ,

2011).

A variety of modeling methodologies have been introduced in recent years to resolve the mech-

anistic connections between environmental variability and upper trophic level dynamics (Travers

et al. , 2007; Plaganyi, 2007; Fulton, 2010). Some of these couple biogeochemical-physical mod-

els to species-focused individual-based or bioenergetics models, e.g. the SEAPODYM model for

tuna (Lehodey et al. , 2008) and the NEMURO.FISH model for herring and saury(Megrey et al. ,

2007). While this allows for detailed investigation of the effect of the environment on the target fish

species, most models of this type do not explicitly resolve ecosystem dynamics between the modeled

fish species and its predators and competitors, or take into account community reorganization that

could result from changing climate. Other efforts have added lower trophic level forcing with modeled

or observed primary production to established food web models, such as with Ecopath with Ecosim

(Christensen & Walters, 2004) and ATLANTIS (Fulton et al. , 2004a,b); this allows resolution of

feedbacks between various functional groups in an ecosystem in response to climate variations, but

does not allow two-way feedback of these effects back down to the level of primary production or

biogeochemistry. Size-based efforts, such as APECOSM (Maury, 2010) provide a simple framework

to look at flows through the entire food chain, though they lack resolution of individual species or

functional groups.

Here, we introduce a modeling structure that combines a fisheries food web model, a biogeo-

chemical model, and a physical model into a fully-coupled end-to-end ecosystem model. The goal of

this framework is to represent the primary trophic interactions of an ecosystem and their response

to both bottom-up climate variability and top-down predation changes in a fully integrated manner.

The challenge in constructing a model of this type derives from the high level of uncertainty associ-

ated with measurements and calculations of upper trophic level feeding and growth parameters, as

well as the sensitivity of lower trophic level plankton dynamics to mortality rates that are altered by

direct modeling of upper trophic level predation (Yoshie et al. , 2007). Furthermore, differences in

modeling approaches that traditionally have been used for plankton ecosystems versus fisheries food

webs can exacerbate these issues by introducing subtle dynamical differences that lead to significant

changes over long time scales. We will describe an approach that addresses these challenges, pro-

ducing an ensemble of simulations capable of reproducing long-term seasonal dynamics in primary

production and biogeochemical cycling, while maintaining steady-state coexistence of upper trophic

level functional groups at levels consistent with observations under contemporary physical forcing.
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Critical aspects of the coupling between plankton ecosystem and fisheries food web models that are

required to achieve such robust simulations are identified through a series of sensitivity tests.

3.2 Methods

3.2.1 The water column ecosystem model framework

The end-to-end ecosystem model framework developed here is based on three different components:

a one-dimensional physical mixed layer model component, a lower trophic level biogeochemical

component based on the NEMURO model (Kishi et al. , 2007b), and an upper trophic level food

web component based on the Ecopath with Ecosim model (Christensen & Walters, 2004). The three

components are fully coupled, allowing the simulation of feedbacks between the physical environment

and all levels of the food chain.

3.2.1.1 The physical model

The physical model used in this study simulates the seasonal evolution of a one-dimensional water

column, resolved vertically and forced at the surface by winds, shortwave radiation, and air and

dew point temperatures. Simulations were run under climatological conditions at a single location

(Ocean Station Papa, 50�N, 145�W). Because advective processes are minimal in the gyre, a one-

dimensional model can capture the predominant processes at this location (Denman & Miyake, 1973),

and analysis of the major water masses in the region indicates similar salinity, temperature, and

nutrient profiles throughout the Alaska Gyre region (north of the Subarctic Current and excluding

the shelf region) (Wong et al. , 2002). Therefore, for our purposes, we consider this one-dimensional

water column to be representative of the entire gyre region.

Salinity is relaxed towards a depth- and time-resolved timeseries on a 7-day timescale, which

allows salinity profiles to respond to storm events (2-3 days) but preserves the seasonal evolution of

the salinity field. Observed winds are translated to surface wind stresses using the bulk formulae of

Large & Pond (1981). Latent and sensible heat fluxes are calculated from the wind speed, air-sea

temperature difference, and dew point temperature using the bulk formulae of Friehe & Schmitt

(1976). Longwave radiation losses are calculated using the Efimova formula, per Simpson & Paulson

(1979). We assume 45% of the incoming shortwave radiation is photosynthetically available, with a

background attenuation of 0.15 m�1; self-shading by phytoplankton is applied within the primary

production calculations but does not feed back to the physical state variables. Mixing is calculated
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following the Mellor-Yamada 2.5 algorithm with a background diffusivity of 1.0⇥ 10

�4 m2s�1, over

a water column of 500 m depth with a vertical grid spacing of 10 m. See A.1 for further details of

the physical model formulation.

3.2.1.2 The lower trophic level biogeochemical model

The NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) model

is a nutrient-phytoplankton-zooplankton model developed to study the interactions between the

planktonic communities of the North Pacific and their environment. The model tracks 11 state

variables: small and large phytoplankton; small, large, and predatory zooplankton; nitrogen in the

forms of particulate and dissolved organic nitrogen (PON and DON, respectively), nitrate (NO3),

and ammonium (NH4); and silica as particulate opal and silicic acid (Si(OH)4) (Kishi et al. , 2007b).

Since its origin, many variations on the NEMURO model have been developed (Werner et al. , 2007;

Kishi et al. , 2010). These include spatial variations ranging from surface-layer only (Kishi et al. ,

2007b) or one-dimensional water column physics (Fujii et al. , 2007) to three-dimensional regional

models (Aita et al. , 2007); versions that incorporate the carbon cycle (Fujii et al. , 2007); and

NEMURO.FISH, which adds a bioenergetic component for certain fish species (Megrey et al. ,

2007).

In this study, we use a version of the NEMURO model based on Kishi et al. (2007b) with

a few modifications. First, we replaced the Steele light curve (Steele, 1962) with a Platt curve

(Platt & Jassby, 1976), reducing the effect of photoinhibition at higher light levels. We raised the

maximum grazing rate of small zooplankton from 0.4 day�1 to 0.8 day�1 to be consistent with

observed allometric relationships for zooplankton (Hansen et al. , 1997). In order to reflect the

difference in sinking behavior between small phytoplankton, which usually have low export- and f-

ratios, and larger phytoplankton whose blooms sink and contribute to export out of the surface layer,

we rerouted half of the small phytoplankton non-predatory losses from the particulate sink (PON)

to the dissolved nitrogen pools (DON and NH4). We also rerouted the egestion of microzooplankton

to the dissolved nitrogen pools to be consistent with the observed importance of microzooplankton

egestion to dissolved organic matter (Nagata, 2000). Finally, we lowered the silica dissolution rate

to 1/(23 day), in line with globally-averaged surface observations (Van Cappellen et al. , 2002).

In addition to these parameter adjustments, we introduced a simple iron cycle to the model. In

previous versions of NEMURO, iron limitation has been approximated through parameterization by

reducing the growth rates of iron-limited phytoplankton (Denman & Pena, 1999). The Eastern Sub-

arctic Gyre is a high-nutrient, low-chlorophyll region where iron plays a key role in limiting growth,
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and we found we were unable to create a simulation that produced realistic large phytoplankton

(diatom) blooms while also maintaining surface nutrients at observed levels without explicitly in-

cluding the effects of iron limitation. Therefore, we added additional iron dynamics following the

model of Fiechter et al. (2009). This model adds an iron limitation term to the already-existing

nitrogen, silica, and light limitation terms that moderate gross primary production; iron limitation

is based on the iron to carbon ratio within phytoplankton cells, and allows for luxury iron uptake

during iron-rich conditions.

In addition to its incorporation into the fully coupled model described below, this version of

NEMURO was used for comparison and parameterization purposes. Tables A.13 through A.20

include the full list of parameters used when running our NEMURO in its standalone form. In this

form, it is run within the physical model described above but not coupled to any upper trophic level

dynamics. Loss to higher trophic levels is approximated through a quadratic mortality closure term.

3.2.1.3 The upper trophic level model

The upper trophic level model is based on the Ecopath model for the Eastern Subarctic Gyre

ecosystem, as described in detail in Chapter 2.

The Ecopath models themselves do not provide time-dynamic simulations, but rather a single

snapshot of the fluxes within an ecosystem at a given point in time. The Ecosim model, which is the

second component in the Ecopath with Ecosim software package, uses these snapshots to calculate

time-varying predictions in the populations of each functional group. It does this by assigning

functional forms to each flux process (predation, non-predatory mortality, etc.), then constraining

the parameters based on the Ecopath mass-balance values.

For example, predation of one group on another is generally assumed to be a function of both the

predator group and prey group biomass: Preij(t) = f(Bi(t), Bj(t)), where Preij(t) is the flux due

to predation from group i to group j at time t, and B(t) is the biomass of a group at time t. The

simplest form of this function would assume a simple linear relationship, as in a classic Lotka-Volterra

system, with the function f in the form aBi(t)Bj(t). Our Ecopath model provides values for Preij ,

Bi, and Bj at time t = 0, allowing us to assign a value to the coefficient: a = Preij(0)/(Bi(0)Bj(0)).

We use this parameter-constraint process to calculate functions associated with grazing, predation,

and non-predatory mortality processes in our model. In addition, the mass-balance biomass values

serve as initial biomass values for all ensemble members. We shy away from naming this portion of

the model “Ecosim”, since we have chosen different functional forms for our process equations than
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can be found in the Ecosim software package; however, the concepts underlying our upper trophic

level model and that one are the same.

For this study, we used a 50-member ensemble of Ecopath models; each ensemble member starts

with a slightly different set of parameters constraining these three flux processes, as well as slightly

different values of initial biomass. In the absence of any external forcing, these processes would

remain in steady-state, i.e. no change in biomass would be seen for any functional group. This

particular property of Ecosim-like models underlies our goal of maintaining steady-state values over

decadal timescales with our fully coupled model.

3.2.2 Coupling the model components

The coupled biogeochemical-lower trophic level-upper trophic level model, referred to hereafter as

the water column ecosystem (WCE) model, merges aspects of both the NEMURO model and an

Ecopath-derived food web model to create an end-to-end ecosystem model. The nutrient state

variables were drawn from the NEMURO model. The remaining living state variables are classified

into three types: phytoplankton (P), zooplankton (Z), or nekton (K) (Figure 3.1 on page 35). The

designation of living functional groups as either planktonic or nektonic reflects both their relationship

to the physical model and their interactions with other functional groups. The planktonic label refers

to any group whose movement is strongly influenced by the movement of the water in which they

reside; these groups are resolved with depth, can feed only on functional groups occupying the same

depth layer as themselves, and are subject to mixing via advection and diffusion in the same manner

as all physical tracers. The nektonic label refers to all other living organisms, including those that

do not live in the water but feed on marine organisms (such as birds); these groups are not subject

to any mixing, and they feed on the integrated sum over depth of their prey groups.

The plankton/nekton distinction can be difficult to make since nearly all organisms are generally

capable of some movement relative to advective and mixing processes. In this context, it is used to

distinguish those functional groups whose foraging distance over a single model time step (3 hours)

is comparable to or less than the physical model resolution (10 m) and therefore limited to a single

grid cell, and whose distribution in the water column can be important to their feeding, versus

those whose foraging covers multiple grid cells and is not strongly depth-dependent. Therefore,

for the purposes of the WCE model, zooplankton are designated as planktonic even if they are

capable of vertical migration; vertical movement can be parameterized through the sinking/rising
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rate parameter in the physical model if necessary to capture the dynamics of a particular ecosystem.

The impact of these assumptions will be discussed in Section 3.3.1.

For the fully-coupled model, 23 of the 24 functional groups from the Ecopath food webs described

in the previous chapter were used as state variables, with the detrital group being discarded in favor

of the more detailed nutrient cycling from the NEMURO model. These 23 groups encompass 2

phytoplankton groups, 5 zooplankton groups, and 16 nekton groups. Both phytoplankton groups

and three of the zooplankton groups in the Ecopath model fill the same functional roles as the five

plankton groups in the NEMURO model.

Figure 3.1 on page 35 displays a schematic of the processes linking the state variables to each

other. A brief description of each process type can be found in Table 3.1 on page 36, with detailed

process equations in A.2. Most of these processes were exclusive to a single parent model component;

gross primary production, phytoplankton respiration, extracellular excretion, and decomposition are

only explicitly modeled in NEMURO, while non-depth-resolved consumption is included only in

Ecopath. Egestion and excretion by consumers are modeled identically in both models as a fraction

of consumption. However, planktonic consumption and non-predatory mortality differ in several

fundamental ways between the two parent models:

1. Resolution: NEMURO models all fluxes volumetrically (biomass per volume), while Ecopath

models are typically built using depth-integrated units (biomass per area).

2. Grazing/predation functional response: NEMURO uses a thresholded Ivlev functional response

for zooplankton grazing and predation, while Ecopath with Ecosim models use a foraging arena

functional response (Walters et al. , 1997) for all predator-prey consumption, including that

between planktonic groups.

3. Effect of temperature on rates: In NEMURO, almost all rate processes, including grazing,

predation, and mortality, are affected by temperature, increasing exponentially with increasing

temperature. The standard implementation of Ecopath with Ecosim does not include any

direct effects of temperature (though time forcing and trophic mediation timeseries can be

used to approximate this effect).

4. Mortality: In NEMURO, non-predatory mortality is proportional to the square of the biomass,

while Ecopath with Ecosim uses a linear mortality function.

When building the WCE model, decisions regarding how to treat these differences proved very

important in determining the stability and realism of the final model. A set of experiments using
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Figure 3.1: The WCE model includes 7 non-living state variables and 3 categories of living state
variables; arrows indicate the flow of nitrogen, silica, and iron between these state variables. Zigzag
arrows indicate sinking of material through the water column. Note that the phytoplankton, zoo-
plankton, and nekton boxes in this schematic indicate variable classes that represent several different
state variables. The phytoplankton groups included in the model include three different nutrient
compartments, for nitrogen, silica, and iron content (non-diatom phytoplankton groups can be pa-
rameterized so that their growth is not dependent on silica). Zooplankton and nekton groups include
only nitrogen compartments. Nitrogen and silica are conserved in the model; the iron cycle includes
only partial remineralization, and is also relaxed toward a constant profile to approximate advective
and airborne sources, and therefore is not conserved.
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Table 3.1: The process variables in this table describe the various types of fluxes connecting the
physical and biological variables in the water column ecosystem model.

Process Variable Parent
component

Description

Gross primary
production

Gpp NEMURO Function of light, temperature, and nutrient
concentration, following Kishi et al. (2007b)and
Fiechter et al. (2009)

Respiration Res NEMURO First-order relationship to biomass, with Q10=2
temperature effect, following Kishi et al. (2007b)

Extracellular excretion Ex NEMURO First-order relationship to gross primary
production, following Kishi et al. (2007b)

Planktonic
consumption

Con NEMURO and
Ecopath

Variation of foraging arena functional response,
parameterized where applicable to mimic NEMURO
Ivlev functional response, with Q10=2 temperature
effect

Nektonic consumption Con Ecopath Variation of foraging arena functional response

Non-predatory
mortality

Mor NEMURO and
Ecopath

Second-order relationship to biomass.

Luxury iron uptake Ufe NEMURO Follows Fiechter et al. (2009)

Egestion Ege Ecopath First-order relationship to consumption

Excretion Exc Ecopath First-order relationship to consumption

Decomposition Dec NEMURO First-order relationship to concentration (i.e.
biomass), with a Q10=2 temperature effect

different coupling strategies was conducted to identify the key features essential for robust simulations

on climate time scales. A list of the different model architectures we tested can be found in Table

3.2 on page 41. We started with a “brute force” baseline coupling between the NEMURO and

fisheries food web models (Section 3.2.2.1), resulting in a model that contains inconsistencies between

formulations of closely interacting groups. We then took steps to increase the internal consistency

of the planktonic and nektonic formulations, and to evaluate the necessity of additional mortality

regimes for plankton and nekton groups (Section 3.2.2.2, Section 3.2.2.3).

3.2.2.1 The baseline case

We started with an Ecosim-style model and replaced all fluxes that overlapped with NEMURO,

namely grazing and predation by microzooplankton (small zooplankton ZS in NEMURO), copepods

(large zooplankton ZL), and large zooplankton (predatory zooplankton ZP), as well as net primary

production, with the corresponding process functions from NEMURO. We opted to use the Ecosim-

derived linear form for mortality for all groups, on the assumption that a linear form would be more

applicable to a system where all predator-prey relationships are explicitly resolved rather than being

modeled implicitly through quadratic loss terms.
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3.2.2.2 Consistent feeding formulations across planktonic groups

For its grazing and predation processes, the NEMURO model uses a thresholded Ivlev curve of the

form

I = m(1� exp(��(B �Bthresh))) (3.1)

where m is a maximum grazing rate, � is the Ivlev constant, Bthresh is the threshold prey concen-

tration for grazing to occur, B is the biomass of prey, and I is the ingestion rate of prey per unit

predator. The upper trophic level model, on the other hand, uses the foraging arena functional

response (Walters et al. , 1997) as modified by Aydin:

ConIij = Q⇤
ij

0

@
Xij · Bintj

B⇤
j
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j

1
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B⇤

i

⌘✓ij

Dij � 1 +

⇣
Binti
B⇤

i

⌘✓ij

1

CA (3.2)

where the subscripts i and j represent the prey and predator groups, respectively. Note that Eq.

(3.2) calculates the total consumption flux from prey to predator, such that the ingestion rate

(similar to I in Eq. (3.1)) would be equal to ConIij
Bj

. The parameters in this functional response

are derived from the Ecopath model for the food web being modeled: Q⇤ is the mass-balanced

depth-integrated consumption between two groups, and B⇤ is the mass-balanced depth-integrated

biomass of a group. The remaining parameters in Eq. (3.2), i.e., X, D, and ✓, are non-dimensional

parameters that control the shape of the functional response curve.

Qualitatively, the Ivlev and foraging arena formulations differ in several ways (Figure 3.2 on

page 39). In NEMURO, the maximum grazing rate parameter (m) is temperature-dependent, while

the consumption parameter in Ecosim (Q⇤
ij) is fixed over time. The Ivlev formulation calculates an

ingestion rate that is independent of the predator biomass, while the foraging arena ingestion rate

can be modulated by both the prey and predator biomasses, with the parameter X defining the

strength of the predator-related term. As X approaches infinity, the predator-related portion of Eq.

(3.2) disappears, creating a linear relationship between grazing rate and number of predators for a

constant amount of prey. However, if X is set to a lower number, the grazing rate versus predator

density relationship saturates. A lower value of X can be used to approximate predator avoidance

behaviors of prey, which effectively make only a small portion of a prey population vulnerable to

predation (Walters et al. , 1997). With X equal to infinity, the foraging arena functional response
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simplifies to a classic Holling Type 2 (✓ = 1, Eq. (3.3)) or Holling Type 3 (✓ = 2, Eq. (3.4))

functional response:

Conij

Bj
=

mBi

k +Bi
: m =

Q⇤
ijDij

B⇤
j

, k = B⇤
i (Dij � 1) (3.3)

Conij

Bj
=

mB2
i

k2 +B2
i

: m =

Q⇤
ijDij

B⇤
j

, k = B⇤
i

p
Dij � 1 (3.4)

Eq. (3.3) and Eq. (3.4) are similar in shape to the Ivlev functional response, but with different

treatment of ingestion rates at low prey densities.

Because the food web used in this study includes five planktonic groups that overlap with the

NEMURO model and two that do not, the baseline version of the coupled model included a mix

of these two functional responses. In order to achieve internal consistency, we wanted to choose

a single functional response that is consistent with the Ecopath mass-balance formulation used to

parameterize the rest of the model while also remaining consistent with the NEMURO formulation,

which we know produces reasonable seasonal dynamics. To accomplish this, we modified the foraging

arena functional response so that it could be applied to either nektonic or planktonic functional

groups links. We first converted the Ecopath-derived parameters to volumetric terms to correspond

to the units of planktonic groups within the WCE model. It is necessary to make an assumption

about the depth distribution of planktonic organisms in order to convert the outputs of Ecopath

into these per-volume quantities. The WCE model uses an average mixed layer depth, MLD, to

make this conversion, so Q0
=

Q⇤

MLD and B0
=

B⇤

MLD . The MLD parameter is also used to set initial

concentration profiles for all planktonic groups in the model.

To parameterize this response for planktonic groups, the NEMURO model zooplankton responses

were used as the target functional response curves for all predator-prey interactions found in both

the Eastern Subarctic Gyre ecosystem described above and the NEMURO model. The shape of

the thresholded Ivlev curve can be best approximated by the grazing response used in the water

column ecosystem model (Eq. (3.2)) when X is set to infinity and ✓ to 2, creating a sigmoidal type

3 functional response (Figure 3.2 on page 39). The remaining parameter, D, is then calibrated so

that the maximum grazing rates and half-saturation concentrations are as close as possible between

the sigmoidal curve and Ivlev curve (Figure 3.3 on page 40).

For the final formulation, we also reintroduced the Q10 temperature effect from NEMURO by

assuming that the mass-balanced values correspond to the rates under average mixed layer temper-
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Figure 3.2: Under their default parameter choices, the functional responses used in the NEMURO
model and the Ecopath with Ecosim model differ greatly from each other. The Ivlev response varies
linearly (type 1) with increasing predator biomass and follows a type 2 relationship with increasing
prey biomass. The foraging arena response can vary between linear (high X) and type 2 (low X)
with increasing predator biomass, and linear (high D) and type 2 (low D, ✓ = 1) or type 3 (low
D, ✓ = 2) with increasing prey biomass. With careful choice of parameters, the two functional
responses become quantitatively very similar. Shown here are a) the thresholded Ivlev functional
response for ZS grazing on PS in the NEMURO model, b) the foraging arena functional response
for microzooplankton grazing on small phytoplankton, with Ecosim default values D = 1000 and
X = 2, and c) the planktonic version of the foraging arena response used for WCE, where X and
D have been calibrated so that the functional response has the same maximum grazing rate and
half-saturation constant as the Ivlev response (X = 10, D = 2.234).

ature conditions. This assured that all planktonic groups shared one consistent grazing functional

response while also replicating the lower trophic level dynamics of the NEMURO model.

3.2.2.3 Density dependent mortality

In many biogeochemical models, a density-dependent mortality rate is used to capture predation

losses from predators not explicitly resolved by the modeled system (e.g. Steele & Henderson, 1981).

In the baseline scenario, we adopted a linear mortality rate because we had resolved all upper trophic

level predation losses. However, density-dependent mortality can also arise for zooplankton due to
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Figure 3.3: The functional response for copepods grazing on large phytoplankton is shown here
as an example of the functional response fitting process. Shown for reference are the NEMURO-
derived Ivlev curve for this feeding link, as well as Holling Type 2 and Type 3 curves with identical
half-saturation constants (i.e. k =

ln 2
� ). The Ecopath mass balance constrains the foraging arena

functional response to pass through the yearly-averaged biomass vs. consumption rate, indicated by
the purple dot, so we fit the parameter D such that the resulting curve is as close as possible to the
target Type 3 curve while respecting this constraint.

egg cannibalism (Ohman & Hirche, 2001), and for phytoplankton due to aggregation (Thornton,

2002) and viral loss (Brussaard, 2004). Classic stock-recruitment theory also suggests that net

reproduction rates for many fishes peaks at an intermediate population, suggesting an increased

mortality rate at higher population densities (Ricker, 1954). A nonlinear mortality rate may be

needed to capture all of these processes, though the precise form is uncertain. Due to the lack of

specific data to constrain our choice, we tested the model with both linear and quadratic mortality

formulations.

3.2.3 Simulations and model evaluation

To evaluate the water column ecosystem model, we ran two series of simulation experiments. The

first was a series of 20-yr simulations used to determine a robust coupling strategy. Once we had

chosen a satisfactory architecture, we used a 50-yr simulation to further validate the model against

observations.

The 20-yr simulations included six different sets of simulations, each using one of the model

architectures outlined in Table 3.2 on page 41. Shortwave radiation, air temperature, and wind

speeds were extracted from the Coordinated Ocean-ice Reference Experiments (CORE) normal-year

datasets (Large & Yeager, 2009). Dew point temperature was derived from the same dataset. A

climatological salinity cycle was derived from the GECCO model’s 1950-2000 salinity product; initial
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Table 3.2: We ran the water column ecosystem model with a variety of different formulations for
the grazing, predation, and mortality fluxes.

Run Predator-prey functional response Mortality formulation

1 (baseline) Ivlev curve for NEMURO-derived interactions,
foraging arena for all others

linear

2 modified foraging arena linear

3 Ivlev curve for NEMURO-derived interactions,
foraging arena for all others

quadratic for plankton, linear for nekton

4 modified foraging arena quadratic for plankton, linear for nekton

5 Ivlev curve for NEMURO-derived interactions,
foraging arena for all others

quadratic

6 modified foraging arena quadratic

profiles for both salinity and temperature were set to the climatological January profiles derived from

the same product.

We quantified the success of each model architecture based on its ability to maintain yearly-

averaged biomass values for all functional groups within the uncertainty ranges used for the initial

conditions over the entire 20-yr simulation period. These initial biomass ranges reflect a compilation

of the sparse observations of standing stock biomass available for the region, and therefore a model

forced by average seasonal conditions should not deviate from these ranges.

Once we determined the best choice of model architecture, we further validated the model with a

50-year simulation, again using climatological forcings, and compared the results against a broader

suite of observations from the Eastern Subarctic Gyre region. The majority of these observations

come from Ocean Station Papa. This location has been a site of regular physical and chemical

sampling since the 1950’s, thus allowing us to validate the lower trophic level biogeochemical results

of the WCE model. We looked at several characteristics of the region in order to measure the skill

of our model, including annual and seasonal macronutrient concentrations and drawdown, annual

and seasonal primary production, and annual standing stock biomass for all living groups.

3.3 Results

3.3.1 Choice of model architecture

When running the baseline model simulation, we immediately encountered problems with com-

petitive exclusion. For the particular ecosystem discussed here, the gelatinous zooplankton group

biomass dropped well below the initial level within five years, with approximately 25% of the en-

semble runs showing complete extinction of this group (Figure 3.4 on page 43, architecture 1).
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The exclusion resulted due to the overlapping prey preferences of the gelatinous zooplankton group

(a non-NEMURO plankton group) and the large zooplankton group (a NEMURO-derived group).

The difference between the numerical formulation for feeding behavior for the NEMURO- and non-

NEMURO-based plankton groups granted a spurious competitive advantage to large zooplankton

over gelatinous zooplankton. In this particular ecosystem, the consolidation of the food web via

cluster analysis (Section 3.2.1.3) led to a minimal amount of overlap between diets of the mod-

eled functional groups, and therefore the problem only manifested itself for one particular functional

group. However, Ecopath models are often designed to resolve the dynamics of dozens of individually-

managed stocks that occupy very similar trophic niches. When applied to such a complex ecosystem,

we would expect these spurious exclusions to increase.

Applying the modified foraging arena functional response consistently to all groups allowed

all plankton groups to coexist (Figure 3.4 on page 43, architecture 2). However, even with the

internally-consistent functional responses, several plankton groups tended to wander outside their

initial biomass ranges over the 20-yr simulation period. While the yearly-averaged biomass of the

phytoplankton groups fell within the target ranges, the seasonal dynamics often departed from ob-

servations (not shown), with small phytoplankton showing an unrealistically large spring bloom

along with a fall bloom not seen in observations in this location. The small phytoplankton blooms

propagated up the food chain, with microzooplankton and large zooplankton increasing above their

target ranges, while copepods and gelatinous zooplankton dropped below theirs.

Switching to a quadratic mortality function for all plankton groups produced much more realistic

phytoplankton blooms and brought all zooplankton groups within their target ranges (Figure 3.4

on page 43, architecture 4). This may suggest that density-dependent mortality terms not linked

to higher predators are indeed important factors to consider when modeling planktonic functional

groups. The population dynamics of nektonic groups, on the other hand, were relatively unaffected

by the switch between linear and quadratic mortality rates (Figure 3.4 on page 43, architectures 4

and 6).

We also found that the use of the quadratic mortality term could mask the inconsistencies in

the mix of grazing functional responses used in the baseline scenario. Simply applying quadratic

mortality to planktonic groups, and leaving the mix of functional responses (Figure 3.4 on page

43, architectures 3 and 5), could bring most ensemble members within the target ranges. However,

the spread between ensemble members tended to be wider in this case, and a few simulations also

created fall blooms under this architecture. Overall, the combination of a consistent predation

functional response for all groups, as well as a quadratic mortality rate for all plankton groups,
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Figure 3.4: As an initial test of model architecture skill, we looked at whether each model was
capable of maintaining the biomass of all living state variables within the uncertainty ranges used
to choose initial conditions over a 20-yr simulation. The blue violin plots display the distribution
of biomass across the 50-member ensemble at the end of each 20-yr simulation; width indicates
the relative number of ensemble members at a given biomass value. The black bars indicate the
interquartile range of the ensembles, with the black circle indicating the ensemble mean. Green
horizontal lines show the upper and lower values of the target biomass ranges (micronektonic squid
and pelagic forage fish are estimated by Ecopath rather than being assigned target ranges, and
therefore are missing these lines). Vertical axes represent integrated biomass, ranging from 0 to
the labeled value, in g C m�2. The horizontal axis indicates the model architecture indices, which
correspond to those found in Table 3.2 on page 41.

proved necessary to consistently reproduce both the target yearly-averaged biomass values as well as

the proper seasonal dynamics for lower trophic level groups. For simplicity, in our final architecture,

we chose to use a quadratic mortality rate for nektonic groups as well; results using a linear mortality

for nekton are similar.
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3.3.2 Validation of final model

An ensemble of 50-yr simulations was run to look more closely at the seasonal dynamics of the

final model architecture over multi-decadal timescales. In this section we compare surface nutrient

concentration, primary productivity, and functional group biomass of the simulations to a variety of

measurements collected from the Eastern Subarctic Gyre region.

3.3.2.1 Surface nutrients

Ocean Station Papa is characterized by seasonal stratification, which plays a large role in controlling

macronutrient concentrations in the surface ocean at this location. Increased winds and decreased

surface temperatures lead to deep mixing in the winter months (Nov. - Feb.), with the mixed layer

depth reaching 90-120 m and allowing replenishment of nitrate and silicate to the mixed layer. In the

summer, stratification increases and the mixed layer shoals to approximately 40 m. The increased

light levels along with plentiful macronutrients allow phytoplankton to bloom, leading to nutrient

drawdown as the summer months progress. Typical nitrate drawdown, from peak winter level to

lowest summer level, is 7 mmol m�3 nitrate and 10-11 mmol m�3 silicate . This region is a high

nutrient, low chlorophyll region, with phytoplankton production primarily being limited by iron

and light, so surface levels of nitrate and silicate remain high even during the summer (Whitney &

Freeland, 1999; Harrison et al. , 2004).

Maintaining surface nutrient concentrations consistent with observations requires both that the

model properly replicates the seasonal deepening and shoaling of the mixed layer, and that it main-

tains the proper assemblages of phytoplankton. In particular, the seasonal changes in ratios between

small phytoplankton that do not use silica, and diatoms (large phytoplankton) that do, will affect the

relative drawdown of nitrate and silicic acid. Modeled nitrate drawdown in the WCE model ranges

from 6.90 - 9.22 mmol m�3 over the ensemble members, with an average drawdown of 8.27 mmol

m�3, and annually-averaged surface nitrate levels stabilize at 14.90 - 21.84 mmol m�3, consistent

with observations. Silicate drawdown varies more widely between ensemble members, from 8.78 -

13.83 mmol m�3, but the ensemble average of 12.17 mmol m�3 is very near the drawdown seen at

Ocean Station Papa (Figure 3.5 on page 45). Surface concentrations of silica tended to drift a bit

over the 50-year span of the simulations, reaching levels between 8.69 - 36.84 mmol m�3. However,

because neither nitrate nor silicate serve as the limiting growth factor for phytoplankton, drifts in

surface concentrations of either nutrient over the 50-year simulations did not affect the production

44



−6

−4

−2

0

2

4

6

 

 NO
3
 anomaly (µM)

Jan Apr Jul Oct Jan
−10

−5

0

5

10
SiOH

4
 anomaly (µM)

10

20

30

0

20

40

WCE

Ensemble average

OSP

ESA

Figure 3.5: Modeled surface nutrient anomaly from yearly average over one simulation year versus
observations at Ocean Station Papa. Observations for Ocean Station Papa (OSP) reflect measure-
ment at this location over the period of 1969-1981(Whitney & Freeland, 1999). Also shown are the
WOA05 climatological surface nitrate anomaly values averaged over the entire Eastern Subarctic
Gyre (ESA) region (Garcia et al. , 2006). Inset figures show the histograms of yearly-averaged
values at the end of the 50-year simulation period, along with the corresponding yearly-average for
each observation dataset.

level or standing stock of phytoplankton, and therefore did not lead to drift in any of the other state

variables.

3.3.2.2 Productivity

Measurements of productivity at Ocean Station Papa have varied over time, from 60 g C m�2 yr�1

during the earlier sampling period from 1960-1976, 140-170 g C m�2 yr�1 in studies conducted

during the mid-1980’s to early 1990’s, to a higher summer value of 215 g C m�2 yr�1 during the

JGOFS surveys of 1992-1997 (Harrison et al. , 2004). There is debate regarding whether the range

in values results from the development of more accurate clean sampling techniques for the later

measurements (Fitzwater et al. , 1982), or whether it (or some of it) reflects an actual change in

productivity over this time period. Seasonally, observations show between a doubling and tripling of

productivity between winter and summer (Boyd & Harrison, 1999). The modeled WCE productivity,

with an annual average ranging between 122.04 - 145.8 and averaging 136.1 g C m�2 yr�1 over all

ensemble members, falls within the range seen in observations. (Figure 3.6 on page 46).
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Figure 3.6: Modeled net primary production over one simulation year. For comparison, net primary
production values estimated by the Eppley-VGPM model applied to SeaWiFS data near Ocean
Station Papa (purple dashed) and over the entire Eastern Subarctic Gyre (red dash-dot) are also
shown, as well as measured production values at Ocean Station Papa as compiled by Boyd & Harrison
(1999) (squares, circles, and triangles indicate data from three different studies, as described in Boyd
& Harrison (1999, Figure 7)).

3.3.2.3 Biomass of living groups

As with the initial 20-year simulations, we considered the model successful at capturing upper

trophic level dynamics if it was capable of maintaining yearly-mean biomass levels within the initial

uncertainty ranges over the entire simulation. Over all 50 ensemble members, only very small drifts

out of this range were observed over the 50-year climatological simulation, indicating that this

parameterization scheme is stable over decadal timescales (Figure 3.7 on page 47).

3.4 Discussion

In recent years, a large number of different modeling approaches have been applied to the end-to-end

problem, and have been compared and contrasted in several reviews (Fulton, 2010; Travers et al.

, 2007). The complexity of these model frameworks and the processes they resolve cover a wide

spectrum. In creating the water column ecosystem model, we intended to create a tool capable of

analyzing ecosystem response to environmental perturbations at both the bottom and top of the

food chain. The model presented here has a combination of strengths that make it valuable for

diverse climate-ecosystem applications.

It provides a true two-way coupling between upper and lower trophic level species, nutrient

cycling, and physics, allowing full analysis of the interacting effects of bottom-up climate effects and

top-down predation and fisheries effects. The coupling includes both propagation of effects through
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Figure 3.7: Vertically-integrated biomass, in g C m�2, for all living functional groups in the model
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the food web via predator-prey interactions, as well as direct feedback between all levels of the food

chain and the physical and chemical environment.

The model maintains robust and stable population dynamics when run over decadal to centennial

timescales. Natural climate variability often manifests itself with periods on the order of a decade,

as quantified by indices such as ENSO or the PDO, while anthropogenic climate change studies often

look 50-100 years into the future. Therefore this model is suited for the study of such climate effects

on population dynamics.

Finally, the intra-model ensemble approach used in this study allows us to simulate many poten-

tial manifestations of a single ecosystem that all fall within the uncertainty ranges of the observed

data. When modeling complex food web interactions, a single representation of a food web is often

not capable of capturing the full range of potential effects resulting from a change in the environment
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or a change in fishing pressure. Therefore, this ensemble method allows us to better quantify the

uncertainty of the simulation results.

This model also provides an example for coupling multiple vertical spatial scales into a single

model. In this particular case, using only one dimension, we were able to link lower trophic level

functional groups that required a high spatial resolution with upper trophic level groups whose

population dynamics could be resolved in a zero-dimensional physical space. The varying spatial

scales allowed us to capture the necessary high-resolution variations in physical properties (such as

light level, temperature, and stratification) that directly affect the locations and concentrations of

smaller organisms without slowing down the upper trophic level calculations with an unnecessarily

fine spatial grid.

The model architecture experiments discussed in Section 3.3.1 elucidated a number of important

points regarding the coupling of plankton ecosystem models with fisheries food web models. The

first point is that density-dependent mortality remains important for capturing the seasonal dynam-

ics of planktonic organisms, even when the model fully resolves all predators of these planktonic

groups. This is particularly true at the phytoplankton level, where a linear mortality rate allows

blooms to grow well beyond the levels seen in observations in this region. The quadratic mortality

term is likely encompassing a variety of processes not explicitly resolved by the process equations

of this model. Phytoplankton aggregation, particularly of diatoms, is known to be a major contrib-

utor to sinking marine snow and occurs primarily when diatom concentrations are high (Thornton,

2002). In addition, recent research has shown that viruses can be important agents of mortality

for phytoplankton, on the same order as loss due to predation, and that density-dependent viral

infection rates play a key roll in limiting phytoplankton blooms (Brussaard, 2004, and references

therein). At the zooplankton level, Ohman & Hirche (2001) observed density-dependent rates of

copepod egg mortality uncorrelated with resource availability, which they attributed to egg canni-

balism by conspecific and similarly-sized zooplankton. The results of the architecture experiments

provide further support that density-dependent mortality is not simply a closure term to represent

higher-level predators, but rather incorporates a variety of important loss processes that control the

seasonal dynamics of planktonic organisms.

The experiments also clarified the importance of using a consistent functional form for graz-

ing/predation that incorporates the strengths of both lower- and upper-trophic level models, so as

to capture both seasonal variations and long-term coexistence among functional groups. The func-

tional groups included in this model operate across a wide range of time scales, with doubling times

ranging from a few days to over a decade. The population dynamics of groups with high turnover
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rates, whose growth and mortality processes operate on a scale of less than a month, can be very

sensitive to assumptions regarding prey functional responses (Gentleman et al. , 2003; Fulton et al.

, 2003). Analysis of piscivorous feeding among pelagic and demersal Atlantic fishes (Moustahfid

et al. , 2010), and a sensitivity study of a full ecosystem model to changes in functional responses

(Fulton et al. , 2003) both indicated that marine ecosystem dynamics are better captured by classic

Holling Type 2 and Type 3 responses than by a linear assumption, though Fulton et al. (2003)

also suggested that further complexity in functional response formulation may add unnecessary data

requirements to the parameterization process with little additional payoff. The foraging arena func-

tional response used in this model incorporates key elements elucidated in these studies, allowing it

to resolve predator/prey dynamics at both the bottom and top of the food web.

Although the model discussed here is tailored to the North Pacific Subarctic region, the basic

framework used can be extended to almost any oceanic ecosystem. The NEMURO biogeochemical

model uses a structure common to many lower trophic level models in use today, where a min-

imal number of phytoplankton and zooplankton groups interact with nutrient pools, sinking and

non-sinking detrital pools, and bacteria through processes of uptake, grazing, death, sinking, de-

composition and mineralization (Fasham et al. , 1990). The widespread use of Ecopath with Ecosim

has also led to an abundance of food web models spanning the globe; over 100 published food web

models can be found on the EwE website (http://www.ecopath.org). The Ecopath algorithm is

also very flexible in the level of ecosystem complexity modeled, such that a user can aggregate or

disaggregate species as necessary to suit the purposes of a given study. While the parameterization

process, including parameterization of the biogeochemical model and the construction of an Ecopath

food web specific to a particular region, is not a simple task, we do believe that the water column

ecosystem framework can be applied to many pelagic ecosystems throughout the global ocean.

Implementing the model globally for climate change applications would require additional con-

sideration of fundamental ecological and physiological considerations which would allow the model

to extrapolate into data poor regions and into the novel environments expected under changing cli-

mate conditions. The methodologies for coupling fisheries food web and planktonic food web models

developed herein, however, are readily adaptable to end-to-end model applications spanning a range

of spatiotemporal scales.
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CHAPTER 4

Ecosystem response to a bottom-up perturbation

4.1 Introduction

How closely linked to net primary production is the production of upper trophic level consumers?

Classical food chain theory suggests that a constant fraction of production (approximately 10%)

is transferred from each trophic level to the next May & McLean (2007), and a variety of regional

studies have shown positive linear trends between common indicators of primary production (such as

chlorophyll a) and fisheries yields (Ware et al. , 2005; Frank et al. , 2006; Chassot et al. , 2007) How-

ever, in their analysis of bottom-up predictor variables versus fisheries production, Friedland et al.

(2012) found that phytoplankton production itself was a very poor predictor of fisheries produc-

tion over globally-distributed systems. Across ecosystems, they found that metrics that accounted

for variations in trophic transfer efficiency and the size-structure of the planktonic food web, such

as particle export ratio or mesozooplankton to primary production ratio, were more highly corre-

lated with fisheries production than primary production. That the relationship between primary

production and fisheries production varies across different ocean environments is in keeping with

classical studies, which found very different transfer efficiencies in marine food webs under varying

environmental conditions (coastal vs. open ocean vs. upwelling areas) (Ryther, 1969). Improved

understanding of fisheries yields and fisheries capacity requires refinements beyond an assumed 10%

transfer efficiency between trophic levels (e.g., Pauly & Christensen, 1995).

A nearly universal characteristic of marine ecosystem models is the inclusion of "non-predatory

loss terms.” These terms are used to represent the net effect of a diversity of loss processes, including

natural mortality (i.e. death due to old age), loss to disease and viruses, unresolved intra-group mor-
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tality (such as egg cannibalism and predation on juveniles of similar species), aggregation and sinking

out of the modeled system (primarily of large phytoplankton), and basal metabolic rate. Since these

terms channel energy away from higher predators, choices concerning the size and functional form

of these terms also have the potential to influence the flow of energy to higher trophic levels. Histor-

ically, fisheries ecosystem models such as Ecopath with Ecosim tend to assume a linear relationship

between biomass of a functional group and loss due to non-predatory processes. However, plankton

models tend to use quadratic mortality closures in order to achieve stability and match observed

seasonal cycles (Steele & Henderson, 1992). Both functional forms can be appropriate for different

contributing processes of the non-predatory loss; viral loss, intra-group mortality, and aggregation

are often observed to be density-dependent processes, and may be better modeled by a quadratic

form, while basal metabolic rate is generally assumed to be constant per unit biomass and thus

would be better modeled with a linear formula.

The structural uncertainties presented by uncertain process formulations, such as that of non-

predatory mortality, are further complicated by the already high parameter uncertainty that exists

in complex models such as this one. Population-scale variables such as standing stock biomass are

challenging to compile for an entire ecosystem. The large range in spatial scales covered by these

ecosystems makes it very difficult to throughly survey the population of even a single target fish

species, for which there may be regular scientific sampling programs as well as plentiful fisheries-

based observations. Non-target species, such as myctophids or other forage fish, play equally key

roles in ecosystem dynamics as fisheries-targeted species, but there is far less data available regarding

the populations of these species. Seabirds are often counted only at their roosting spots, but forage

over a much larger swath of ocean, while whales may migrate thousands of miles to forage. Gelati-

nous zooplankton may play important roles in mesozooplankton communities, but are unable to be

sampled by traditional net tows and therefore there is far less data on them than their crustacean

counterparts. The lack of plentiful observations at all levels of the food web can lead to wide error

bars on the input parameters used in ecosystem models, and this uncertainty is propagated to the

output of any simulations.

In this study, we attempt to quantify both the magnitude and the uncertainty of the response

of the end-to-end ecosystem model to a bottom-up perturbation, namely an increase in net primary

production due to alleviation of micronutrient limitation. The impact of non-predatory mortality

on the energy flow through the system is quantified and drivers of the amplification of primary

productivity perturbations are diagnosed. We also assess the contribution of uncertainties in non-

predatory loss structure to the overall spread of predicted changes in upper trophic level productivity.
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4.2 Methods

In the previous chapter, we found that our modeled Eastern Subarctic Gyre region is limited by iron

(at times co-limited by light) throughout the entire year under climatological conditions. Therefore,

the easiest way to systematically augment primary production in this region in the model is to

alleviate the iron limitation through increased surface deposition of iron. Note that in designing

this experiment, we were not attempting to replicate a short-term iron fertilization experiment, but

rather to look at the response of the entire ecosystem to a long-term change in productivity.

Because we are doing a series of iron fertilization experiments, we implemented an improved

representation of iron dynamics following Stock et al. (n.d.). Rather than the relaxation scheme

used in Kearney et al. (2012), we now explicitly resolve two forms of iron: bioavailable dissolved

iron (Fe), and particulate iron (POFe) (Figure 4.1 on page 53). Like the simpler scheme used in the

previous chapter, this model adds an additional limitation term to macronutrient uptake, based on

the available dissolved iron, and allows phytoplankton to take up and store luxury iron during periods

of high availability. But in this case, rather than simply relaxing to an observed profile, we explicitly

model interaction with ligands, adsorption of dissolved iron onto particles, and remineralization of

particulate iron. See Section A.2.3 for further details of this formulation.

In this set of experiments, we ran 5 sets of simulations, with 30 ensemble members each, in which

we systematically raised the surface deposition flux of iron from its climatological value of 2.83 pmol

Fe/m2/s to values 1.25, 1.5, 2, 3, and 5 times higher than that. The 1.25-times perturbation captures

the approximate magnitude of interannual variability in dust deposition in the subarctic gyre (Figure

4.2 on page 53), while the higher values represent levels that might be expected more rarely, such as

in response to volcanic activity in the nearby Aleutian Islands. Each simulation was run for 10 years

under climatological conditions, followed by 10 years of the raised-iron conditions, and we used the

final year of each simulation for our data analysis. While not every functional group had reached a

completely new steady state by the 10-year mark, all groups showed less than 1.5% change in biomass

per year at the end of the climatological period and even the slowest-growing groups showed less

than a 5% change 10 years after the strongest perturbations; therefore we felt this spinup time was

sufficient for our analyses.

In initial trial runs, as described briefly in the previous chapter, we found that a quadratic

mortality function needs to be applied to phytoplankton groups in order to replicate the proper

seasonal cycles seen in observations. To assess the impact of the assumed form of non-predatory
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mortality, the remainder of the living functional groups (consumers) were run with non-predatory

mortality functions of the form

M0 = aBc (4.1)

where M0 is the total loss due to non-predatory mortality (molN/m3/s for plankton, molN/m2/s for

nekton), B is the biomass of the group (molN/m2[3]), and c was set to either 1, 1.5, or 2, representing

linear, mixed, and quadratic mortality, respectively. The coefficient a was constrained through the

Ecopath-derived values for biomass (B⇤, the mass-balanced biomass of a functional group) and M⇤
0

(the mass-balance value for all group production not passed to higher trophic levels) such that

a = M⇤
0 /(B

⇤c
). The quadratic structure captures the end case where density-dependent processes

are the primary contributors to non-predatory loss, while the linear structure represents the other

end case where density-independent processes predominate.

We encountered some issues when attempting to analyze the results of the purely linear mortality

case. While we wanted to include this formulation as a critical end case representing non-density de-

pendent processes, the linear case is mathematically less stable than higher order functions. Coupled

with the high-temporal-resolution physical forcing included in this model, the instability manifests

itself by causing some ensemble members to deviate from their target ranges, even under climato-

logical conditions. We were unable to eliminate this undesirable behavior, even through meticulous

balancing of our initial parameters. In order to make consistent comparisons between results under

the different mortality regimes, we chose to eliminate certain ensemble members from our calculations

of consumer productivity; for each consumer, those ensemble members that produced climatolog-

ical results outside of the mass-balance target ranges at the end of the first 10-year period were

eliminated from all from the values considered across all three mortality structures.

4.3 Results

4.3.1 Primary productivity under enhanced iron deposition

Increased iron deposition leads to an increase in total net primary productivity, although there is

considerable variability in the magnitude of this increase across ensemble members, particularly at

very high iron levels (Figure 4.3 on page 56). Surface iron concentrations increase approximately

linearly as surface deposition increases. In response, net productivity increases until surface dissolved
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iron levels reach approximately 0.2 nM Fe, which occurs in the 3x deposition regime; beyond this

level, macronutrients become limiting once more and primary production levels off.

The increased primary productivity manifests itself almost entirely through increases in the small

phytoplankton group, while the large phytoplankton group shows very little change in either biomass

or production over the different surface iron regimes. This is due to a combination of both bottom-up

and top-down controls on the population growth of the larger size class. Immediately following the

increase in surface iron that occurs at the 10-year mark in all simulations, the alleviation of micronu-

trient limitation increases the realized growth rates of both phytoplankton groups (Figure 4.4 on

page 57). As a result, both phytoplankton groups see enhanced production levels during the spring

and early summer of the first year. However, this early bloom leads to the onset of macronutrient

limitation and also supports an enhanced mesozooplankton community, both of which strongly limit

the growth of the large phytoplankton population. The newly-strengthened mesozooplankton com-

munity maintains a strong top-down control on the microzooplankton group, which is the primary

predator of small phytoplankton, allowing small phytoplankton biomass and production to expand.

To further isolate the top-down controls resulting from increased net primary production, we ran a

simplified version of the food web model, where food web dynamics are uncoupled from the physical

and biogeochemical portions of the model, without spatial resolution or seasonal variations. Here we

simply imposed a 20% increase in the net primary production of a single phytoplankton group and

ran the ecosystem to a new steady state (Figure 4.5 on page 58). When only the small phytoplank-

ton group was given increased production, the mesozooplankton groups all increased, leading to

higher grazing rates on large phytoplankton and hence decreased large phytoplankton biomass. On

the other hand, when large phytoplankton were given the increased production, the increased meso-

zooplankton grazers cropped the microzooplankton group, leading to an overall increase in small

phytoplankton biomass and production. This demonstrates clearly that in this particular food web

structure, the small phytoplankton are able to benefit from food web restructuring resulting from

increased production by large phytoplankton, while large phytoplankton are negatively impacted by

the restructuring under high production by small phytoplankton.

While observations of phytoplankton community response to a long-term change like the one

we simulated are not available to either confirm or refute our results, the increased net primary

production levels under the higher surface flux conditions allow us to closely analyze the propagation

of production to higher trophic levels.
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4.3.2 Propagation of productivity to higher trophic levels

In the broadest sense, our simulations demonstrated that increased primary production leads to an

increase in consumer net production at almost all levels of the food web. However, the sensitivity

of consumer production to changes in net primary production varied widely across both ensemble

members and mortality structures. The analysis below looks closely at the relationship between net

primary production in this ecosystem and the net production of each consumer group in the food

web.

The relationship between net primary production and consumer net production generally followed

a linear trend, when analyzed per simulation (i.e one ensemble member and mortality structure,

across all iron levels). We see smaller absolute changes in consumer production per change in

primary production at higher trophic levels, but this is primarily a reflection of the overall decline

in energy flows as one moves to higher trophic levels (Figure 4.6 on page 60). By looking at the

relative, rather than absolute, changes in productivity values, we can uncover a few key patterns

that emerge across trophic levels under the different model structures.

While both the linear and quadratic mortality structures in the model result in a positive linear

trends of consumer production vs. net primary production, the slope of this linear trend can differ

significantly between structures at higher trophic levels. To quantify the different patterns of prop-

agation throughout the food web (and across the many orders of magnitude spanned by production

rates from producers to top consumers), we defined a metric to relate relative change in net primary

productivity to relative change in consumer productivity:

Rx,i =

⇣
NSPx,i

NSP0,i

⌘

⇣
NPPx,i

NPP0,i

⌘ (4.2)

where NPP is net primary production, NSP is the net secondary production associated with each

consumer group, the subscript 0 indicates the climatological surface iron flux period, the subscript

x indicates any of the raised-surface-iron-flux periods, and the subscript i indicates the ensemble

member index. A value of Rx,i equal to one would indicate no rearrangement of the food web in

response to increased production, i.e. all increases are distributed in the same proportion as the

original production levels, while values greater than 1 would indicate an amplification of the relative

production at the consumer level.

This metric reveals a difference in the response of the food web under the three different mor-

tality structures (Figure 4.7 on page 62). Under the quadratic scheme, the food web sees little
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rearrangement, with all values of Rx falling close to 1. However, under the linear mortality scheme,

the increased production outpaces static non-predatory loss rates throughout the food web, leading

to an amplification of the relative production reaching consumers.

The amplification of changes in consumer production relative to primary production was large for

several groups with high non-predatory losses under climatological conditions (including gelatinous

zooplankton, salmon, marine mammals, and birds, see Figure 2.10 on page 27). However, a regression

of the amplification metric against fraction mortality due to non-predatory loss explains only 7% of

the variation. This suggests that amplification patterns may not arise from just the local balance

of predatory versus non-predatory mortality, but effects that accumulate throughout the food web.

Regressing against both local non-predatory to predatory ratio and trophic level explains 15% of

variance in the amplification metric.

While the differences in amplification between the three mortality structures is clear when con-

sidering each ensemble member relative to itself, the structural differences become far less apparent

when properties are analyzed across all ensemble members. We tested both the distributions of

biomass and net production of each consumer to see if they were significantly higher under the

linear mortality structure than with the quadratic structure. Even following the strongest perturba-

tion, the majority of variables did not display any statistically significant differences (Mann-Whitney

U-test, ↵=0.05) in their distributions. The exceptions to this fell into two groups. First, as with the

relative metric discussed in the previous paragraph, functional groups with a high non-predatory

mortality rate, including jellyfish, salmon, mammals, and orcas, showed significantly higher biomass

and production values under the linear mortality structure than the quadratic one. At the other end

of the trophic spectrum, microzooplankton biomass, copepod biomass and production, and gelati-

nous zooplankton biomass and production were all lower under the linear scheme than the quadratic

one (Figure 4.8 on page 63). This difference at the bottom of the food chain seems to stem from

changing predation pressure as a result of the larger jellyfish population; jellyfish feed on several of

the zooplanktonic groups, and therefore the increase in this group leads to a decrease in many of its

prey groups.

4.4 Discussion

The results of this analysis elucidate some interesting points regarding the response of a complex

ecosystem model to a seemingly straightforward perturbation, as well as the interplay of structural

and parameter uncertainty in that response.
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First, this experiment demonstrated that the interacting effects of light limitation, tempera-

ture dependence, and nutrient limitation on each individual phytoplankton group, as well as their

indirect effects on each other through top-down effects of changing grazing pressure, can lead to

unexpected changes in primary production even with a relatively simple forcing factor. While both

phytoplankton groups benefit directly, through an increased growth rate, from the increased iron

deposition levels, the long-term population-scale benefit was isolated to only one of these functional

groups. Prior to running the simulations, we had hypothesized that the large phytoplankton would

be more likely to benefit from the increased iron levels, since traditional wisdom suggests that small

phytoplankton are more tightly regulated by the quick-responding microzooplankton. While that

traditional wisdom held briefly, over longer periods of time the microzooplankton were kept in check

by their predators, who also happened to feed on large phytoplankton, allowing small phytoplankton

to escape predation more so than the large.

While our simulations, with their long-term changes in surface iron flux, cannot be directly

compared to short-term iron fertilization experiments, it is interesting to note that iron addition

experiments in the subarctic Pacific region have demonstrated mixed responses by the phytoplank-

ton community. Three mesoscale iron fertilization experiments have been carried out in the Eastern

Subarctic gyre since the iron hypothesis was first proposed as a mechanism for incomplete nutrient

use in this region (Martin & Fitzwater, 1988; Martin et al. , 1989): the Subarctic iron Enrichment

for Ecosystem Dynamics Study (SEEDS) in 2001, Subarctic Ecosystem Response to Iron Enrich-

ment Study (SERIES) in 2002, and SEEDS II in 2006. The phytoplankton communities were very

similar prior to fertilization for all three experiments, with the small phytoplankton (primarily prym-

nesiophytes and chlorophytes) dominating, and similar chlorophyll levels were measured each time

(Suzuki et al. , 2009). Over the 13-day post-fertilization observation period, SEEDS saw an in-

crease of 2-5 times in the nanoplankton, but the response was dominated by a 45-fold increase in

the diatom community, with a shift towards centric diatoms (Takeda & Tsuda, 2005). The SERIES

experiment observed increases in all size classes over the first 10 days of observations, followed by a

bloom of diatoms, this time primarily the smaller pennate diatoms, over the final 8 days of obser-

vation (Marchetti et al. , 2006). Contrary to these two studies, the SEEDS II fertilization observed

no bloom of diatoms, with the picophytoplankton instead dominating the increase in biomass and

productivity seen over the 26-day study (Uematsu et al. , 2009). The diversity of responses may

indicate that higher predation closures are more dynamic than we consider them, and that they may

structure changes in planktonic food web.
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In our study, the upper trophic level consumers showed fairly regular increases in production as a

result of the increased primary production. Despite the complex network of pathways connecting the

various functional groups to each other, there were no clear “winners” or “losers” resulting from this

particular ecosystem perturbation. Instead, all consumer groups tended to experience an increase

in both net production and biomass following ten years of increased primary production.

We found that when quantified in terms of relative change, the structural form of non-predatory

mortality could affect whether the increased production was amplified as it moved up the food chain.

Linear mortality functions tend to pass the production to the top of the food web, benefiting top

predators more so than lower trophic level consumers. In contrast, quadratic mortality functions

lead to damping of this response, as much of the increased production is recycled through the non-

predatory loss terms rather than being passed to higher trophic level predators. The difference

between these two structural regimes can be important to note when constructing complex ecosys-

tem models, particularly when not explicitly accounting for the uncertainty in input parameters.

Often, ecosystem studies look only at the relative change in population variables, rather than the

absolute change, recognizing that input uncertainty may render the latter less useful than the former.

However, this study demonstrates that the relative change in ecosystem variables can be strongly

influenced by structural uncertainties, more so than the absolute values of these variables.

However, whether choices regarding the functional form of non-predatory mortality significantly

altered predicted productivity of a single group was less clear. When considering the full range

of parameter uncertainty, we found that the differences in the responses predicted by the three

non-predatory mortality structures could only be seen for a few variables, related to top predators

with low predatory mortality. However, it is important to note that the salmon group, representing

the most commercially-important species in this food web, was one of the functional groups that

did show different responses under different mortality structures. Because we did not explicitly

model fishing mortality, loss to fishing pressure was considered part of this functional group’s non-

predatory mortality. This perturbation experiment suggests that capturing the correct structural

form of fishing loss and other non-predatory losses is crucial when modeling fisheries target groups.

In this context, our coupling of biogeochemistry to a food web has not completely eliminated

closure terms, but rather pushed them higher in the food chain, toward the level of commercially-

targeted species and the fisheries that “prey” on them. The likely role of fishing in these closure

terms makes it essential to further push the end-to-end concept toward the linkages connecting the

diverse social and economic factors that control dynamic fishing responses.
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CHAPTER 5

Summary

In this dissertation, an end-to-end ecosystem model that explicitly links physics, biogeochemistry,

and food web dynamics was developed, validated against observations, and applied to analyze ecosys-

tem response to a bottom-up perturbation.

In Chapter 2, we developed several techniques to expand upon traditional Ecopath models such

that they isolate the primary pathways of energy through a food web and encompass parameter

uncertainty. We found that our group reduction technique, based on hierarchical clustering quantified

by shared predator and prey linkages, was able to maintain a wide variety of ecosystem properties,

even when the number of functional groups resolved was varied between 47 and 7. We also presented

an ensemble-generation technique that allowed us to create many different Ecopath models based

on the same set of data, all of which represented a possible representation within the bounds of the

observation uncertainty. By running simulations with a suite of upper trophic level models, rather

than a single one, we are able to quantify not just the mean predicted outcome, but a full range

of possible outcomes critical for evaluating scientific robustness and for potential applications to

management.

Coupling these upper trophic level models to lower trophic level biogeochemical models proved

much more tricky than originally anticipated. Simply connecting the models together in a brute

force manner revealed certain clashes in the formulations of each model. Through our series of

model architecture experiments, discussed in Chapter 3, we determined that consistent treatment

of predator/prey functional response for both planktonic and nektonic groups was necessary in

order to maintain coexistence throughout the food web. We also found that phytoplankton groups

required the stability provided by density-dependent non-predatory mortality terms in order to
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properly replicate their seasonal dynamics. The final model framework, run for 50 years under

climatological forcings in the Eastern Subarctic Pacific ecosystem, was able to reproduce observed

seasonal dynamics in primary production and nutrient drawdown. It was also able to maintain stable

populations of upper trophic level functional groups over the entirety of the simulation, as would be

expected given the lack of perturbations imposed on the system in this set of experiments.

Finally, in Chapter 4, we used our model to investigate the propagation of increased primary

production through the full food web. We also looked at how assumptions regarding the formulation

of non-predatory mortality affected the amplification of changes as they moved to higher trophic

levels. This experiment revealed that density-independent formulations of non-predatory mortality

led to an amplification of relative changes in production at higher trophic levels, particularly in

groups that started with low predatory to non-predatory loss ratios in the initial parameterization

process. This included top predators with few marine predators, such as whales, birds, and jellyfish,

as well as commercially-targeted species like salmon. Density-dependent formulations tended to

damp the propagation of production increases, leading to relatively uniform relative changes in

biomass and production throughout the food web. However, while these differences in amplification

between density-dependent and non-density-dependent mortality terms were consistently seen across

ensemble members, the effect of non-predatory mortality on the ensemble of solutions for any given

functional group was often masked by uncertainties in the food web parameterization. The differences

that did emerge were seen in the populations of top predators, indicating that the closure terms

of these groups may need to be more carefully linked to specific mechanisms, including dynamic

representations of fisheries.

As (Link et al. , 2012) notes, the use of ecosystem models in the context of natural resource

management is often accompanied by a high burden of proof, due to the many biological and socio-

economic consequences that can result from management decisions. While uncertainty cannot be

eliminated from models that incorporate so many complex processes, we can take steps toward

quantifying the uncertainty associated with them. We feel the model presented in this dissertation

addresses this need. By running an ensemble of simulations, we were able to place error bounds on

all of our simulated predictions. In addition, we believe we have presented the process equations

we used in a very transparent manner, differentiating between those that are well-verified by field

and laboratory studies (such as primary production), those that can only be roughly estimated

based on ecological theory (such as predator-prey functional responses), and those that remain

very uncertain in both magnitude and form (such as non-predatory mortality). Our study of the

contribution of non-predatory mortality structural uncertainty to the overall spread in simulated
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results demonstrated how even very poorly constrained processes can be included in models with

some degree of confidence. Such detailed dynamical characterization of model behavior is essential

before complex models can be applied to management applications.

While we feel this model presents an important step forward in modeling complex marine ecosys-

tems, there are still many places where improvements can be made. The model presented in this

thesis encompasses a variety of ecosystem processes, including nutrient cycling, primary produc-

tion, planktonic grazing, upper trophic level predator-prey interactions, and non-predatory mortal-

ity. To parameterize these processes, this model is heavily reliant on contemporary observations

of population-scale properties, including biomass, vital rates, and diet composition. While effec-

tive incorporation of observational constraints is a strength for many contemporary applications,

these observations may fail to capture the true range of variability possible when the ecosystem

is presented with novel environmental conditions, such as those that are predicted as a result of

anthropogenic climate change. For example, the migration of entirely new species into a region may

drastically shift the diet composition of former residents, in ways not predicted by contemporary

observations. Changes in temperature or pH may directly affect the growth, reproduction, and

recruitment of species throughout the food web. To truly capture this range of potential changes,

observation-based models such as this should move toward more physiological representations of all

processes included within them.
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APPENDIX A

Model description

A.1 The one-dimensional physical model

A.1.1 Description of equations

The physical model used in this study is a Matlab-based code designed to simulate a one-dimensional

water column. The code is designed so that a variety of different biological models can be run within

the same physical context, as was done in this study with the standalone NEMURO simulations and

the fully-coupled water column ecosystem simulations.

The mixed-layer model simulates the evolution of water column properties under specified forcing

by wind, heat, and salinity forcing. Allowance is also made for currents via a depth-independent

pressure acceleration. There are six physical state variables in the physical model formulation: U

and V are the east to west and south to north current velocities, and T and S are the temperature

and salinity. The turbulence closure scheme introduces the remaining two state variables; : q2 is

a turbulent quantity equal to twice the turbulent kinetic energy, and ` is a turbulent length scale.

These two state variables are used to calculate mixing-related parameters (KM and KV ) in Eq.

(A.1), Eq. (A.2), Eq. (A.3), and Eq. (A.4).

The momentum equations are standard one-dimensional formulations:

@U

dt
� fV = � 1

⇢0

@p

@x
+

@

@z
KM

@U

@z
� ✏U (A.1)
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@V

dt
+ fU = � 1

⇢0

@p

@y
+

@

@z
KM

@V

@z
� ✏V (A.2)

where f is the Coriolis parameter, ⇢ is the density, KM is the viscosity, @p
@x is a specified pressure

gradient (to impose a mean current) and ✏ is a momentum dissipation term. The dissipation term

serves as a surrogate for horizontal momentum divergence. It removes energy from past storm events

over a specified time-scale as though energy was being transferred to more quiescent surrounding

waters. Energy tends to accumulate unrealistically in one-dimensional water columns without this

effect (Mellor, 2001). The value of ✏ was tuned such that the energy in the modeled currents is

consistent with that observed. Values comparable to the time scales of storm events (1/3 day�1)

yielded reasonable results. The equations are solved using a semi-implicit Crank-Nicolson scheme.

The Mellor-Yamada turbulence closure scheme (Mellor & Yamada, 1982) is used to calculate

mixing coefficients. The reader is referred to this reference and Mellor (2004) for the governing

equations and other details of this formulation. A k-epsilon formulation (see review by Umlauf &

Burchard (2005)) was also tested and yielded similar results to those presented herein. The top

and bottom boundary conditions for Eq. (A.1) and Eq. (A.2) are provided by the wind stress

formulation of Large & Pond (1981) and a quadratic bottom drag law, respectively. Mixing at the

surface was augmented by the wave breaking scheme of Mellor & Blumberg (2004).

The temperature and salinity equations are given by:

@T

@t
=

@

@z
KV

@T

@z
+ ss (A.3)

@S

@t
=

@

@z
KV

@S

@z
+ ss (A.4)

where KV is the vertical turbulent diffusion coefficient, and ss is used to indicate sources minus

sinks. The temperature source minus sink term (shortwave heat flux) and boundary conditions

(longwave heat flux, sensible and latent heating and cooling) are described in Section 3.2.1.1 in this

paper. The salinity source minus sink term derives from the relaxation to observations as described

in Section 3.2.1.1.

Biological state variables are mixed, where applicable, following the same formulation as Eq.

(A.3), with the source minus sink term representing any additional vertical movement; in the sim-

ulations described in this paper, this term was used to apply sinking velocities to the particulate
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state variables (PON and Opal). The set of equations describing the remaining biological sources

and sinks (Appendix A.2) is solved following the mixing calculations at each time step.

A.1.2 Input variables and datasets for the Eastern Subarctic Gyre

Shortwave radiation, air temperature, and wind speeds were extracted from the Coordinated Ocean-

ice Reference Experiments (CORE) normal-year datasets (Large & Yeager, 2009). The CORE

datasets provide 6-hourly timeseries of various air-sea fluxes (Figure A.1 on page 72). Dew point

temperature was derived from the same dataset. A climatological salinity cycle was derived from

the GECCO model’s 1950-2000 salinity product. The resulting timeseries was resolved monthly;

the modeled salinity relaxation used bilinear interpolation to translate this timeseries to the higher-

resolution model grid. Initial profiles for both salinity and temperature were set to the climatological

January profiles, also derived from the GECCO product.

A.2 Process equations for the water column ecosystem model

The water column ecosystem model consists of 7 non-living state variables, and 3 classes of living

state variables, coupled together by three sets of ordinary differential equations, one for each of the

three nutrients included in the model. For simplicity, the following equations omit indicators of

depth resolution, but unless otherwise indicated, all equations apply to a single model grid cell.

A note on subscripts, which are plentiful in this documentation: subscripts indicate the index of

a functional group to which a given process variable or parameter pertains. I typically use i as this

index, and expand to j and k when I need to represent more than one functional group in a single

equation. Where variables are related to fluxes between groups, they are denoted by two subscripts

(e.g. xij), with the source group index followed by the sink group index. For clarity I often separate

multiple subscripts from each other with commas (e.g. xNH4,NO3 represents a parameter relating

to a flux from the NH4 state variable to the NO3 variable); commas also separate parameter-

name subscripts from functional group subscripts (e.g. Vmax,PS is the Vmax growth rate parameter

associated with the PS state variable).

The values of the various biological state variables are referred to as Bi in all the equations

below; depending on the particular state variable, these can be thought of as either biomass val-

ues or nutrient concentrations. All phytoplankton groups are represented by three state variables:

phytoplankton nitrogen (Bi), phytoplankton silica (BSi,i), and phytoplankton iron (BFe,i), while

zooplankton and nekton groups consist of only nitrogen state variables. Equations A.5, A.6, and
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Figure A.1: Climatological datasets used to force the physical model, including wind speed, solar
radiation, air temperature, dewpoint temperature, and salinity. Light lines in the upper three panels
show the high-resolution data used to force the model; dark lines show a weekly running average,
and are provided only for visual clarity.
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A.7 encompass the equations used in the version of the model used in Chapter 3; further elaboration

of the process variables within these equations are found in Section A.2.1 and Section A.2.2. In

Chapter 4, modifications were made to the iron cycle; Eq. (A.8) describes the new dynamics, and

the process variables are described in Section A.2.3.

d(Bi)

dt
=

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:
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d(BSi,i)
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(A.6)

d(BFe,i)

dt
=
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The tables in Section A.2.4.2 provide definitions and values for all parameters in the above set of

equations, as well as the process variable equations in the following sections. Table A.13 on page 94

through Table A.20 on page 96 include all parameters related to the biogeochemistry, most of which

came from the NEMURO model. The following table, Table A.21 on page 97, defines variables that

vary over time in the simulations; these variables are functions of the various state variables in the

model. Finally, Table A.22 on page 98 through Table A.26 on page 102 provide parameters that are

derived from the Ecopath algorithm.

A.2.1 Nitrogen flux equations for living state variables

A.2.1.1 Gross primary production (Gpp)

Gross primary production fluxes flow from the NO3 and NH4 variables to each phytoplankton

group, following (Kishi et al. , 2007b), with the addition of iron limitation following Fiechter et al.

(2009). The uptake of nitrogen is described by:

Gppi = Vmax,i exp(Kgpp,iT ) · Lnut,i · Llight,i ·Bi (A.9)

where Bi is the nitrogen-based biomass of group i, resolved with depth.

A.2.1.2 Respiration (Res)

Respiration applies to all phytoplankton groups, and flows from the phytoplankton to the NO3 and

NH4 groups following the same f-ratio as uptake via primary production:

Resi = Res0i exp(Kres,iT )Bi (A.10)

A.2.1.3 Extracellular excretion (Ex)

Extracellular excretion applies to all phytoplankton groups, and flows from the phytoplankton to

the DON group. Following Kishi et al. (2007b), extracellular excretion is proportional to the flux

due to gross primary production:

Exi = �i ·Gppi (A.11)
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A.2.1.4 Consumption (Con)

Predator/prey interactions between functional groups follow the Aydin version of the foraging arena

functional response. The exact form of the functional response varies based on whether the predator

and prey groups are planktonic or nektonic. For interactions between two planktonic groups, the flux

is resolved with depth for both the predator and prey group, and the uptake rates are temperature-

dependent:

Conij =
Q0

ij

exp(KGra,i · Tavg)
exp(KGra,i · T )

0

@
Xij · Bj

B0
j

Xij � 1 +

Bj

B0
j

1

A

0

B@
Dij ·

⇣
Bi
B0

i

⌘✓ij

Dij � 1 +

⇣
Bi
B0

i

⌘✓ij

1

CA (A.12)

where here, the subscripts i and j represent the prey and predator groups, respectively. As

described in Section 3.2.2.2, the biomass and consumption rate parameters are derived from the

Ecopath mass balance: Q0
=

Q⇤

MLD and B0
=

B⇤

MLD , where Q⇤ and B⇤ are the per-area mass-

balanced quantities returned directly from Ecopath. The parameters MLD and Tavg describe the

yearly averaged mixed layer depth and mixed layer temperature, respectively, as simulated by the

one-dimensional physical model.

For interactions between two nektonic groups, the functional response follows the same form, but

in units of biomass integrated over depth. Nektonic consumption does not vary with temperature.
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ij
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i
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i
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1

CA (A.13)

When a nektonic group preys upon a planktonic group, the total flux is calculated in depth-

integrated units. However, the loss on the plankton side is resolved with depth and distributed

proportionally to the prey biomass at each depth, while the flow to the predator remains in depth-

integrated units:
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where ConI =

´ zmax

0 Condz.

A.2.1.5 Excretion (Exc) and egestion (Ege)

Egestion and excretion are proportional to the total consumption of prey by a predator. Egestion

flows from the predator to the PON group, with the exception of egestion by microzooplankton,

where egestion is split between the PON , DON , and NH4 groups. Excretion flows from the predator

group to the NH4 group. All excretion and egestion by nektonic groups is assumed to take place in

the surface layer:

Egei =GSi ·

0

@
X

k=plank

Conki +

P
`=nek ConI`i

�z1

1

A z = 1 (A.16)

Egei =GSi ·
X

k
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A z = 1 (A.18)

Exci =(1�GEi �GSi) ·
X

k

Conki z 6= 1 (A.19)

A.2.1.6 Non-predatory mortality (Mor)

Non-predatory mortality, e.g. loss to old age or disease, is modeled as a quadratic function of

biomass. For planktonic groups, this flux is in units of mass per volume:

Mori =

✓
M0i

B0
i

◆
·B2

i (A.20)

while for nektonic groups it is in units of mass per area:

MorIi =

✓
M0i

B⇤
i

◆
·Bint2i (A.21)

As with egestion and excretion by nektonic groups, non-predatory mortality of nektonic groups

is assumed to occur in the surface layer, such that in the surface layer,

Mori =
MorIi
�z1

(A.22)

when i = nekton.
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A.2.2 Additional fluxes

A.2.2.1 Proportional-to-nitrogen fluxes of silica and iron

The majority of fluxes between iron- and silica-based state variables occur in proportion to nitroge-

nous fluxes. Silica fluxes due to gross primary production (Gpp), extracellular excretion (Ex), and

respiration (Res) between phytoplankton groups and SiOH4 occur in a constant proportion to the

respective fluxes in nitrogen between phytoplankton groups and all dissolved nitrogen pools (NO3,

NH4, and DON). Similarly, fluxes due to non-predatory mortality (Mor) from phytoplankton

groups to the PON group are accompanied by proportional fluxes of silica from the large phyto-

plankton to particulate opal group. Silica is assumed to be completely egested by phytoplankton

grazers, so the proportional flux due to predator consumption (Con) of phytoplankton silica is

routed entirely to the particulate opal group, rather than being split between predator, egestion,

and excretion as is the case for nitrogenous consumption.

Iron fluxes between the two phytoplankton groups and the dissolved iron group also occur propor-

tionally to nitrogen fluxes, though the ratio between the two elements varies over time (see Section

A.2.2.2). However, only a fraction of the iron fluxes out of the phytoplankton groups ends up in the

dissolved iron pool, with the remainder leaving the system.

A.2.2.2 Luxury iron uptake (Ufe)

In addition to the proportional-to-nitrogen uptake and loss of iron due to gross primary production,

respiration, extracellular excretion, grazing loss, and natural mortality, phytoplankton can also gain

and lose iron through a relaxation process following the model of Fiechter et al. (2009). This model

allows phytoplankton to take up dissolved iron in order to adjust their internal Fe:C ratios toward a

value predicted by the ambient dissolved iron in the surrounding water. This additional uptake term

accounts for the fact that iron uptake, unlike macronutrient uptake, is not necessarily a function

of dissolved iron concentration, and that iron to carbon ratios within phytoplankton cells can vary

widely over time depending on conditions. The luxury uptake in the WCE module is described by:

Ufei =
R0i �Ri

tFe,i
·Bi ·RC:N (A.23)
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A.2.2.3 Decomposition (Dec)

Decomposition fluxes follow the model of Kishi et al. (2007b), with a decay rate related to temper-

ature:

Decij = VDec,ij exp(KDec,ijT ) ·Bi (A.24)

where the subscripts i and j represent the source and sink groups, respectively, and Bi the

concentration of the source group.

A.2.3 Iron dynamics in the quota model

The iron model used in Chapter 4 is based closely on one developed for the Carbon, Ocean Biogeo-

chemistry and Lower Trophics (COBALT) marine ecosystem model (Stock et al. , n.d.), with only

a few adjustments to parameter values in order to tune the dynamics to a one-dimensional water

column.

Iron uptake for phytoplankton is based on an internal cell quota, accounting for both requirements

and additional luxury uptake. Iron’s contribution to overall nutrient limitation, which regulates the

uptake of macronutrients, is termed iron deficiency (DFe,i) and is calculated based on the internal

ratio of iron to nitrogen. However, uptake of iron is not proportional to uptake of nitrogen, but

instead based on a separate limitation term (LFe,i), allowing phytoplankton to increase their internal

Fe:N ratios to a preset limit:

Qupi =

8
>><

>>:

Vmax,i exp(Kgpp,iT ) ·BFe,i · LFe,i · µFe:N,i, if RFe:N,i < RFe:Nmax,i

0, otherwise
(A.25)

Iron is not tracked beyond the level of phytoplankton, but upon loss to predation is recycled

to the dissolved and particulate iron state variables proportionate to the nitrogenous excretion and

egestion fluxes of their predators.

Scavenging of dissolved iron onto particles follows a single ligand model, where only non-ligand-

bound iron is available for adsorption onto particles. Light is assumed to greatly reduce the effec-

tiveness of ligand binding through the production of oxygen free radicals (Fan, 2008). This impact is

assumed to decay at light levels below 10 W m�2 in a manner consistent with the observed decline
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of hydrogen peroxide in the water column (Yuan & Shiller, 2001). The free unbound iron, Fefree,

is calculated via:

KLig · Fe2free + (1 +KLig · (Ligbkg � Fe)) · Fefree �BFe = 0 (A.26)

with adsorption onto particles directly proportional to this free iron:

Ads = ↵scav · Fefree (A.27)

Finally, a fraction of particulate iron is remineralized to the dissolved iron pool, proportional to

remineralization of particulate nitrogen to ammonium.

DecPOFe,Fe = DecPON,NH4 ·
BPON

BPOFe
· reff (A.28)

A.2.4 Parameterization for the biological model

A.2.4.1 Ecopath input data

The majority of the Ecopath data used to construct our food web model came the previously-

published Aydin-48 model (Aydin et al. , 2003). However, a few modifications were made to this

data prior to running the simplification process described in the previous section.

The first modification made was to eliminate the bacteria functional group from the Aydin-48

model. In the original model, this functional group was included as a prey item for microzoo-

plankton, “preying” itself on the two detrital functional groups. However, in their time-dynamic

simulations, Aydin et al. (2003) found that their results were highly sensitive to this represen-

tation of the microbial loop, and it led to some lower trophic level dynamics that disagreed with

accepted biogeochemical models from the region; they concluded that it was sufficient to assume

that bacterial processes occurred within the detrital pools and removed the bacteria group from

some of their later simulations. Because we intended to link the Ecopath-derived food web model

directly to a biogeochemical model that already included parameterizations for the microbial loop,

we decided to eliminate the bacteria group from the food web dynamics entirely, and we replaced

the microzooplankton diet with one of 100% small phytoplankton.
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Table A.1 on page 81 and A.2 provide descriptions of the 47 functional groups that remained

in the model, including the most common species classified under each functional group and a very

basic description is listed for each. Pertinent information regarding each group’s lifecycle are also

provided.

After examining the sources of zooplankton data for the Aydin-48 model, we made several ad-

justments to the data for those groups. (Aydin et al. , 2003) resolved the zooplankton community

into eleven different functional groups: microzooplankton, copepods, euphausiids, pteropods, am-

phipods, sergestidae (shrimp), chaetognaths, salps, ptenohores, large jellyfish, and a miscellaneous

group (mainly larvaceans and polychaetes). Much of the data for these groups was derived from a

simulation of the NEMURO biogeochemical model. We found several issues with the assumptions

used to translate the NEMURO output data into Ecopath input data.

First, the version of NEMURO used by Aydin et al. (2003) was an early realization of that

model (Eslinger et al. , 2000; Megrey et al. , 2000), and we found we were unable to replicate their

results using the a version that follows the “official” description (Kishi et al. , 2007a). For this study,

we developed our own biogeochemical model, based very closely on NEMURO, and substituted the

values from a simulation of our model in place of those detailed in the Aydin et al. (2003) report.

Second, Aydin et al. (2003) interpreted NEMURO’s predatory zooplankton group (ZP) as repre-

senting only non-gelatinous omnivores, i.e. euphausiids, pteropods, and amphipods. They gathered

data for the gelatinous zooplankton groups (large jellyfish, chaetognaths, salps, and ctenophores)

from other sources, and estimated the population of the carnivorous shrimp and miscellaneous groups

each as 10% of the ZP value. Overall, this led to a community with a very large mesozooplankton

community, more than twice that of the copepod population, despite the fact that copepods should

be the dominant mesozooplankton genera (Goldblatt et al. , 1999; Harrison et al. , 2004). While

NEMURO’s ZP state variable does have an omnivorous diet, in our opinion it was intended to rep-

resent all unresolved predators of the two smaller zooplankton state variables (which correspond to

the microzooplankton and copepod populations); in this Ecopath model, this includes all not only

the nine of the remaining zooplankton groups but all other non-planktonic groups. Based on descrip-

tions of the mesozooplankton community in subarctic gyre (Goldblatt et al. , 1999), we decided to

distribute 50% of the ZP biomass to the omnivorous, non-gelatinous zooplankton groups (euphausi-

ids, pteropods, and amphipods), 40% to the omnivorous, gelatinous groups (salps and ctenophores),

and the remaining 10% to the carnivorous groups (shrimp, ctenophores, and miscellaneous).

The final issue with the NEMURO-derived zooplankton biomass data in the Aydin et al. (2003)

report involved the conversion of units between NEMURO, which tracks state variables through their
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Table A.1: A description of the 47 functional groups included in the unsimplified version of the
food web model. Species listed are not exhaustive, but represent the dominant members of each
functional group.

Group Includes Details

Sperm whales sperm whales (Physeter
macrocephalus)

a very large toothed whale, only mature males are
found in the subarctic gyre region, and only during
the summer months.

Toothed whales orcas (Orcinus orca) includes the mammal-eating transient subpopulation
and some portion of the piscivororous (and typically
more coastal) resident subpopulation

Fin whales fin whales (Balaenoptera
physalus)

a baleen whale, migrates to the gyre during summer
months to feed

Sei whales sei whales (Balaenoptera
boealis)

a baleen whale, migrates to the gyre during summer
months to feed

Northern fur seals northern fur seals
(Callorhinus ursinus)

a large fur seal.

Elephant seals northern elephant seals
(Mirounga angustirostris)

large seal, migrates biannually between the Alaska
Gyre and California breeding beaches.

Dall’s porpoises Dall’s porpoises
(Phocoenoides dalli)

a porpoise

Pacific white-sided
dolphins

Pacific white-sided dolphins
(Lagenorhynchus
obliquidens)

a dolphin

Northern right whale
dolphins

Northern right whale
dolphins (Lissodelphis
borealis)

a small dolphin

Albatross primarily Black-footed
albatross (Phoebastria
nigripes) and Laysan
albatross (Phoebastria
immutabilis)

large seabirds

Shearwaters primarily sooty shearwaters
(Puffinus griseus) and
short-tailed shearwaters
(Puffinus tenuirostris)

medium-sized seabirds, the dominant seabird in the
Gulf of Alaska region

Storm Petrels primarily fork-tailed storm
petrels (Oceanodroma
furcata) and Leach’s storm
petrels (Oceanodroma
leucorhoa)

small seabirds

Kittiwakes primarily black-legged
kittiwakes (Rissa tridactyla)

seabirds in the gull family

Fulmars northern fulmar (Fulmarus
glacialis)

a seabird

Puffins primarily tufted puffins
(Fratercula cirrhata)

a medium-sized seabird

Skuas primarily south-polar skuas
(Stercorarius maccormicki)

a large seabird

Jaegers primarily Pomarine jaegars seabird, in the skua family

Sharks salmon sharks (Lamna
ditropis)

small shark, approximately 2m long, homeothermic

Large gonatid squid armhook squid (family
Gonatidae)

medium-sized squid
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Table A.2: A description of the 47 functional groups included in the unsimplified version of the food
web model (continued).

Group Includes Details

Boreal clubhook squid boreal clubhook squid
(Onychoteuthis
borealijaponica)

a medium-sized squid

Neon flying squid neon flying squid
(Ommastrephes bartramii)

a slightly larger squid

Sockeye salmon sockeye salmon
(Oncorhynchus nerka)

the most abundant salmon species in the Eastern
Gyre, anadromous

Chum salmon chum salmon (Oncorhynchus
keta)

the second-most abundant salmon species in the
Easterb Gyre, anadromous

Pink salmon pink salmon (Oncorhynchus
gorbuscha)

smallest Pacific salmon, anadromous, have a two-year
breeding cycle, with even- and odd-year populations
not interbreeding

Coho salmon coho salmon (Oncorhynchus
kisutch)

a salmon, anadromous

Chinook salmon Chinook salmon
(Oncorhynchus tshawytscha)

the largest Pacific salmon, anadromous

Steelhead steelhead, or rainbow trout
(Oncorhynchus mykiss)

salmonid, anadromous

Pomfret Pacific pomfret (Brama
japonica)

a large perciform fish

Saury Pacific saury (Cololabis
saira)

medium-sized (30-40 cm), highly migratory fish,
important commercial fish, especially in Asia

Pelagic forage fish primarily sticklebacks
(Gasterosteus aculeatus)

small (4 cm) schooling forage fish

Micronektonic squid primarily gonatids such as
Berryteuthis anonychus and
Gonatus onyx

juvenile squid, few data measurements available

Mesopelagic fish myctophids, or lanternfishes
(family Myctophidae),
particularly Stenobrachius
leucopsarus

small mesopelagic fish

Large jellyfish phylum Cnidarian small jellyfish

Ctenophores phylum Ctenophora comb jellies, gelatinous

Salps family Salpidae planktonic tunicates, gelatinous

Chaetognaths phylum Chaetognatha marine worms, gelatinous

Sergestid shrimp family Sergestidae shrimp

Miscellaneous predatory
zooplankton

mainly Larvaceans and
Polychaetes

planktonic tunicates and annelid worms

Amphipods order Amphipoda crustacean zooplankton

Pteropods Thecosomata planktonic gastropods

Euphausiids krill (order Euphausiacea) crustacean zooplankton

Copepods subclass Copepoda small crustacean zooplankton

Microzooplankton any <200 µm mainly meroplanktonic larva and copepod nauplii

Large phytoplankton any <5 µm includes prasinophytes, prymnesiophytes
(coccolithophorids), cryptophytes, and cyanobacteria

Small phytoplankton primarily diatoms represent large size class, includes silica cycle

DNH3 detritus, dissolved detritus pool

POM detritus, particulate detritus pool
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nitrogen content, and Ecopath, which uses total wet weight. While Aydin et al. (2003) detailed

the assumptions used to convert the NEMURO data from mmol N m�2 to g C m�2, including

elemental ratios and mixed layer depth values, no explanation was given for the 0.01 g C/g wet

weight conversion factor that was then used to calculate wet weight of both phyto- and zooplankton

groups. While this order of magnitude estimate is common in conversions of fish wet weight to

carbon content, it is much lower than most measurements for plankton. For example, crustacean

zooplankton wet mass to carbon ratios range from 0.06-0.12 g wet mass/gC Harris et al. (2000).

We compromised with a conversion factor of 0.03 gC/g wet weight, which we applied throughout

this study whenever converting between element-based and weight-based units.

The final adjustment we made to the Aydin-48 data concerned the growth efficiency value applied

to the ctenophore group. The value of 0.03 used for this group appeared extremely low, even for

a gelatinous group. Aydin et al. (2003) cited Pauly et al. (1996) as the source of this number.

However, Pauly et al. (1996) derived their carnivorous jelly data from measurements of the cnidarian

Aglantha, and even for this species they commented that the consumption rate they were using was

“very high, perhaps excessively so.” Measured growth efficiencies for ctenophores vary from less

than 10% to 45% (Reeve et al. , 1978, 1989); we settled on a value of 0.3, in line with that of the

other zooplankton groups, in order to resolve Ecopath balance issues that arose as a result of the

NEMURO-derived adjustments detailed above.

The final set of Ecopath input data for the 47-group model can be found in Tables A.3 through

A.9. Following the simplification process described in Section 2.2, the food web was reduced to 24

groups. The Ecopath input parameters for this 24-group model are found in Tables A.10, A.11, and

A.12.

A.2.4.2 Tables of parameters

The following series of tables describe and define all parameters that were used throughout the

documentation of the water column ecosystem model.
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Table A.3: Ecopath input variables for the 47-group food web, including biomass (B, tons wet weight
m�2), production/biomass (PB, yr�1), consumption/biomass (QB, yr�1), ecotrophic efficiency (EE),
growth efficiency (GE), and fraction unassimilated (GS)

Group B PB QB EE GE GS

Value Ped Value Ped Value Ped

Sperm whales 0.000929 0.5 0.0596 0.4 6.61 0.2 0.2
Toothed whales 2.8e-05 0.5 0.0252 0.4 11.16 0.2 0.2
Fin whales 0.027883 0.5 0.02 0.4 4.56 0.2 0.2
Sei whales 0.005902 0.5 0.02 0.4 6.15 0.2 0.2
Northern fur seals 0.000246 0.5 0.235 0.4 39.03 0.2 0.2
Elephant seals 0.00043 0.5 0.368 0.4 11.08 0.2 0.2
Dall’s porpoises 0.0059864 0.5 0.1 0.4 27.47 0.2 0.2
Pacific white-sided dolphins 0.0039625 0.5 0.14 0.4 25.83 0.2 0.2
Northern right whale dolphins 0.0038973 0.5 0.16 0.4 24.14 0.2 0.2
Albatross 4e-05 0.5 0.05 0.4 81.59 0.2 0.2
Shearwaters 0.0004 0.5 0.1 0.4 100.13 0.2 0.2
Storm Petrels 5.6e-05 0.5 0.1 0.4 152.08 0.2 0.2
Kittiwakes 5.2e-05 0.5 0.1 0.4 123 0.2 0.2
Fulmars 7.4e-05 0.5 0.1 0.4 100.26 0.2 0.2
Puffins 5.8e-05 0.5 0.1 0.4 104.33 0.2 0.2
Skuas 5.4e-05 0.5 0.075 0.4 96.6 0.2 0.2
Jaegers 3.8e-05 0.5 0.075 0.4 96.6 0.2 0.2
Sharks 0.05 0.8 0.2 0.6 10.95 0.4 0.2
Large gonatid squid 0.03 0.8 2.555 0.6 7.3 0.6 0.2
Boreal clubhook squid 0.012 0.8 2.555 0.6 7.3 0.6 0.2
Neon flying squid 0.45 0.8 2.555 0.6 6.205 0.6 0.2
Sockeye salmon 0.089656 0.5 1.27 0.1 10.13 0.1 0.2
Chum salmon 0.054136 0.5 1.93 0.1 14.51 0.1 0.2
Pink salmon 0.023267 0.5 3.37 0.1 18.49 0.1 0.2
Coho salmon 0.0044535 0.5 2.47 0.1 16.55 0.1 0.2
Chinook salmon 0.0093031 0.5 0.8 0.3 0.3 0.15 0.2
Steelhead 0.0093 0.5 0.8 0.3 0.3 0.15 0.2
Pomfret 0.21 0.8 0.75 0.4 0.4 0.20 0.2
Saury 0.45 0.8 1.6 0.6 7.9 0.7 0.2
Pelagic forage fish 0.8 1.5 0.6 5 0.7 0.9 0.2
Micronektonic squid 0.8 3 0.6 15 0.7 0.9 0.2
Mesopelagic fish 4.5 0.8 0.9 0.6 3 0.7 0.2
Large jellyfish 4 0.8 3 0.7 10 0.7 0.2
Ctenophores 1.5488 0.5 4 0.7 13.333 0.7 0.3
Salps 1.5488 0.5 9 0.7 30 0.7 0.3
Chaetognaths 4.1302 0.5 6.9876 0.7 23.292 0.7 0.3
Sergestid shrimp 4.1302 0.8 6.9876 0.7 23.292 0.7 0.3
Miscellaneous predatory zooplankton 4.1302 0.8 6.9876 0.7 23.292 0.7 0.3
Amphipods 5.1628 0.8 6.9876 0.7 23.292 0.7 0.3
Pteropods 5.1628 0.8 6.9876 0.7 23.292 0.7 0.3
Euphausiids 5.1628 0.8 6.9876 0.4 23.292 0.4 0.3
Copepods 20.919 0.1 23.151 0.1 77.169 0.4 0.3
Microzooplankton 16.83 0.1 38.833 0.1 129.44 0.4 0.3
Large phytoplankton 27.029 0.8 41.677 0.1 68.132 0.4
Small phytoplankton 42.427 0.5 70.621 0.1 101.6 0.4
DNH3 50 0.1 0.1 0.4
POM 50 0.1 0.1 0.4
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Table A.4: Diet fraction input for the 47-group food web model.
Predator Prey Diet

fraction
Pedigree

Sperm whales Large gonatid squid 0.02287 0.7
Boreal clubhook squid 0.00915
Neon flying squid 0.34299
Sockeye salmon 0.00208
Chum salmon 0.00125
Pink salmon 0.00054
Coho salmon 0.0001
Chinook salmon 0.00022
Steelhead 0.00022
Pomfret 0.00486
Saury 0.01042
Pelagic forage fish 0.126
Micronektonic squid 0.375
Mesopelagic fish 0.10416

Toothed whales Fin whales 0.22725 0.7
Sei whales 0.04811
Northern fur seals 0.002
Elephant seals 0.00351
Dall’s porpoises 0.04879
Pacific white-sided dolphins 0.03229
Northern right whale dolphins 0.03176
Albatross 0.00032
Shearwaters 0.00326
Storm Petrels 0.00046
Kittiwakes 0.00042
Fulmars 0.00061
Puffins 0.00047
Skuas 0.00044
Jaegers 0.00031
Large gonatid squid 0.00305
Boreal clubhook squid 0.00122
Neon flying squid 0.04573
Sockeye salmon 0.0249
Chum salmon 0.01504
Pink salmon 0.00646
Coho salmon 0.00124
Chinook salmon 0.00258
Steelhead 0.00258
Pomfret 0.05833
Saury 0.12498
Pelagic forage fish 0.264
Micronektonic squid 0.05

Fin whales Large gonatid squid 0.001524 0.7
Boreal clubhook squid 0.000609
Neon flying squid 0.022866
Sockeye salmon 0.001245
Chum salmon 0.000752
Pink salmon 0.000323
Coho salmon 6.19e-05
Chinook salmon 0.000129
Steelhead 0.000129
Pomfret 0.002917
Saury 0.00625
Pelagic forage fish 0.076
Micronektonic squid 0.025
Mesopelagic fish 0.062499
Chaetognaths 0.054357
Sergestid shrimp 0.041179
Misc. predatory zooplankton 0.041746
Amphipods 0.083492
Pteropods 0.083492
Euphausiids 0.20873
Copepods 0.287004

85



Table A.5: Diet fraction input for the 47-group food web model (continued).
Predator Prey Diet

fraction
Pedigree

Sei whales Large gonatid squid 0.001524 0.7
Boreal clubhook squid 0.000609
Neon flying squid 0.022866
Sockeye salmon 0.001245
Chum salmon 0.000752
Pink salmon 0.000323
Coho salmon 6.19e-05
Chinook salmon 0.000129
Steelhead 0.000129
Pomfret 0.002917
Saury 0.00625
Pelagic forage fish 0.076
Micronektonic squid 0.025
Mesopelagic fish 0.062499
Chaetognaths 0.05435
Sergestid shrimp 0.041179
Misc. predatory zooplankton 0.041746
Amphipods 0.083492
Pteropods 0.083492
Euphausiids 0.20873
Copepods 0.287004

Northern fur seals Large gonatid squid 0.00915 0.7
Boreal clubhook squid 0.00366
Neon flying squid 0.1372
Sockeye salmon 0.02988
Chum salmon 0.01804
Pink salmon 0.00775
Coho salmon 0.00148
Chinook salmon 0.0031
Steelhead 0.0031
Pomfret 0.06999
Saury 0.14998
Pelagic forage fish 0.267
Micronektonic squid 0.15
Mesopelagic fish 0.15

Elephant seals Large gonatid squid 0.0122 0.7
Boreal clubhook squid 0.00488
Neon flying squid 0.18293
Sockeye salmon 0.01132
Chum salmon 0.00683
Pink salmon 0.00294
Coho salmon 0.00056
Chinook salmon 0.00117
Steelhead 0.00117
Pomfret 0.056
Saury 0.12
Pelagic forage fish 0.2
Micronektonic squid 0.4

Dall’s porpoises Large gonatid squid 0.01372 0.7
Boreal clubhook squid 0.00549
Neon flying squid 0.20579
Sockeye salmon 0.01494
Chum salmon 0.00902
Pink salmon 0.00388
Coho salmon 0.00074
Chinook salmon 0.00155
Steelhead 0.00155
Pomfret 0.035
Saury 0.07499
Pelagic forage fish 0.208
Micronektonic squid 0.225
Mesopelagic fish 0.2
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Table A.6: Diet fraction input for the 47-group food web model (continued).
Predator Prey Diet

fraction
Pedigree

Pacific white-sided dolphins Large gonatid squid 0.00762 0.7
Boreal clubhook squid 0.00305
Neon flying squid 0.11433
Sockeye salmon 0.03984
Chum salmon 0.02406
Pink salmon 0.01034
Coho salmon 0.00198
Chinook salmon 0.00413
Steelhead 0.00413
Pomfret 0.09332
Saury 0.19997
Pelagic forage fish 0.172
Micronektonic squid 0.225
Mesopelagic fish 0.1

Northern right whale dolphins Large gonatid squid 0.01524 0.7
Boreal clubhook squid 0.0061
Neon flying squid 0.22866
Sockeye salmon 0.00498
Chum salmon 0.00301
Pink salmon 0.00129
Coho salmon 0.00025
Chinook salmon 0.00052
Steelhead 0.00052
Pomfret 0.01167
Saury 0.025
Pelagic forage fish 0.053
Micronektonic squid 0.25
Mesopelagic fish 0.4

Albatross Large gonatid squid 0.04573 0.7
Boreal clubhook squid 0.01829
Neon flying squid 0.68598
Saury 0.1
Pelagic forage fish 0.1
Micronektonic squid 0.05

Shearwaters Saury 0.275 0.7
Pelagic forage fish 0.275
Micronektonic squid 0.3
Amphipods 0.0189
Pteropods 0.0189
Euphausiids 0.04724
Copepods 0.06496

Storm Petrels Saury 0.05 0.7
Pelagic forage fish 0.05
Micronektonic squid 0.6
Amphipods 0.0378
Pteropods 0.0378
Euphausiids 0.09449
Copepods 0.12992

Kittiwakes Saury 0.4 0.7
Pelagic forage fish 0.4
Amphipods 0.0252
Pteropods 0.0252
Euphausiids 0.06299
Copepods 0.08661

Fulmars Pelagic forage fish 0.04 0.7
Micronektonic squid 0.96

Puffins Saury 0.4 0.7
Pelagic forage fish 0.4
Micronektonic squid 0.1
Amphipods 0.0126
Pteropods 0.0126
Euphausiids 0.0315
Copepods 0.04331
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Table A.7: Diet fraction input for the 47-group food web model (continued).
Predator Prey Diet

fraction
Pedigree

Skuas Saury 0.5 0.7
Pelagic forage fish 0.5

Jaegers Saury 0.5 0.7
Pelagic forage fish 0.5

Sharks Large gonatid squid 0.01782 0.8
Boreal clubhook squid 0.00713
Neon flying squid 0.26724
Sockeye salmon 0.05324
Chum salmon 0.03215
Pink salmon 0.01382
Coho salmon 0.00264
Chinook salmon 0.00552
Steelhead 0.00552
Pomfret 0.12471
Saury 0.26724
Pelagic forage fish 0.103
Micronektonic squid 0.1

Large gonatid squid Pelagic forage fish 0.01 0.6
Micronektonic squid 0.33
Chaetognaths 0.04484
Sergestid shrimp 0.03397
Misc. predatory zooplankton 0.03444
Amphipods 0.06888
Pteropods 0.06888
Euphausiids 0.1722
Copepods 0.23678

Boreal clubhook squid Pelagic forage fish 0.01 0.6
Micronektonic squid 0.99

Neon flying squid Neon flying squid 0.295 0.6
Saury 0.058
Pelagic forage fish 0.319
Micronektonic squid 0.223
Mesopelagic fish 0.105

Sockeye salmon Pelagic forage fish 0.10982 0.1
Micronektonic squid 0.07968
Mesopelagic fish 0.10982
Ctenophores 0.01609
Salps 0.01609
Misc. predatory zooplankton 0.00171
Amphipods 0.29328
Pteropods 0.23976
Euphausiids 0.10058
Copepods 0.03318

Chum salmon Pelagic forage fish 0.00802 0.1
Micronektonic squid 0.03929
Mesopelagic fish 0.00802
Ctenophores 0.20285
Salps 0.20285
Chaetognaths 0.00043
Misc. predatory zooplankton 0.01474
Amphipods 0.07363
Pteropods 0.06719
Euphausiids 0.08491
Copepods 0.29806
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Table A.8: Diet fraction input for the 47-group food web model (continued).
Predator Prey Diet

fraction
Pedigree

Pink salmon Pelagic forage fish 0.068096 0.1
Micronektonic squid 0.034823
Mesopelagic fish 0.068096
Ctenophores 0.003826
Salps 0.003826
Misc. predatory zooplankton 8.64e-06
Amphipods 0.32162
Pteropods 0.440933
Euphausiids 0.038951
Copepods 0.019816

Coho salmon Pelagic forage fish 0.367206 0.1
Micronektonic squid 0.205691
Mesopelagic fish 0.367206
Ctenophores 7.31e-05
Salps 7.31e-05
Amphipods 0.008047
Pteropods 0.04623
Euphausiids 0.002736
Copepods 0.002736

Chinook salmon Pelagic forage fish 0.367206 0.1
Micronektonic squid 0.205691
Mesopelagic fish 0.367206
Ctenophores 7.31e-05
Salps 7.31e-05
Amphipods 0.008047
Pteropods 0.04623
Euphausiids 0.002736
Copepods 0.002736

Steelhead Pelagic forage fish 0.367206 0.1
Micronektonic squid 0.205691
Mesopelagic fish 0.367206
Ctenophores 7.31e-05
Salps 7.31e-05
Amphipods 0.008047
Pteropods 0.04623
Euphausiids 0.002736
Copepods 0.002736

Pomfret Saury 0.04 0.5
Micronektonic squid 0.75
Mesopelagic fish 0.08
Chaetognaths 0.01
Sergestid shrimp 0.01
Misc. predatory zooplankton 0.01
Amphipods 0.03
Pteropods 0.01
Euphausiids 0.05
Copepods 0.01

Saury Chaetognaths 0.05298 0.7
Sergestid shrimp 0.04014
Misc. predatory zooplankton 0.04069
Amphipods 0.08138
Pteropods 0.08138
Euphausiids 0.20344
Copepods 0.5

Pelagic forage fish Chaetognaths 0.06795 0.7
Sergestid shrimp 0.05147
Misc. predatory zooplankton 0.05218
Amphipods 0.10437
Pteropods 0.10437
Euphausiids 0.26091
Copepods 0.35875
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Table A.9: Diet fraction input for the 47-group food web model (continued).
Predator Prey Diet

fraction
Pedigree

Micronektonic squid Micronektonic squid 0.05 0.7
Chaetognaths 0.06455
Sergestid shrimp 0.0489
Misc. predatory zooplankton 0.04957
Amphipods 0.09915
Pteropods 0.09915
Euphausiids 0.24787
Copepods 0.34082

Mesopelagic fish Chaetognaths 0.15 0.7
Sergestid shrimp 0.03
Misc. predatory zooplankton 0.03
Amphipods 0.24
Pteropods 0.031
Euphausiids 0.171
Copepods 0.348

Large jellyfish Ctenophores 0.04356 0.7
Salps 0.03829
Chaetognaths 0.03159
Sergestid shrimp 0.02393
Misc. predatory zooplankton 0.02426
Amphipods 0.04852
Pteropods 0.04852
Euphausiids 0.12131
Copepods 0.62

Ctenophores Copepods 0.25 0.7
Microzooplankton 0.25
Large phytoplankton 0.5

Salps Copepods 0.25 0.7
Microzooplankton 0.25
Large phytoplankton 0.5

Chaetognaths Amphipods 0.04444 0.7
Pteropods 0.04444
Euphausiids 0.11111
Copepods 0.8

Sergestid shrimp Amphipods 0.04444 0.7
Pteropods 0.04444
Euphausiids 0.11111
Copepods 0.8

Misc. predatory zooplankton Amphipods 0.04444 0.7
Pteropods 0.04444
Euphausiids 0.11111
Copepods 0.8

Amphipods Copepods 0.4 0.7
Microzooplankton 0.4
Large phytoplankton 0.2

Pteropods Copepods 0.4 0.7
Microzooplankton 0.4
Large phytoplankton 0.2

Euphausiids Copepods 0.4 0.3
Microzooplankton 0.4
Large phytoplankton 0.2

Copepods Microzooplankton 0.3 0.3
Large phytoplankton 0.4
Small phytoplankton 0.3

Microzooplankton Small phytoplankton 1 0.3
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Table A.10: Ecopath input variables for the 24-group simplified food web, including biomass (B,
tons wet weight m�2), production/biomass (PB, yr�1), consumption/biomass (QB, yr�1), ecotrophic
efficiency (EE), growth efficiency (GE), and fraction unassimilated (GS)

Group B PB QB EE GE GS

Value Ped Value Ped Value Ped

Albatross 4e-05 0.5 0.05 0.4 81.59 0.2 0.2
Mammals,sharks 0.065451 0.72918 0.18408 0.55279 14.192 0.35279 0.2
Neon flying squid 0.45 0.8 2.555 0.6 6.205 0.6 0.2
Orcas 2.8e-05 0.5 0.0252 0.4 11.16 0.2 0.2
Boreal clubhook squid 0.012 0.8 2.555 0.6 7.3 0.6 0.2
Seabirds 1 0.000166 0.5 0.086145 0.4 98.232 0.2 0.2
Pomfret 0.21 0.8 0.75 0.4 0.4 0.2 0.2
Seabirds 2 0.000566 0.5 0.1 0.4 107.8 0.2 0.2
Gonatid squid 0.03 0.8 2.555 0.6 7.3 0.6 0.2
Salmon 0.19011 0.5 1.6971 0.11957 12.081 0.11957 0.13748 0.2
Baleen whales 0.033785 0.5 0.02 0.4 4.8378 0.2 0.2
Micronektonic squid 0.8 3 0.6 15 0.7 0.9 0.2
Mesopelagic fish 4.5 0.8 0.9 0.6 3 0.7 0.2
Pelagic forage fish 0.8 1.5 0.6 5 0.7 0.9 0.2
Saury 0.45 0.8 1.6 0.6 7.9 0.7 0.2
Jellyfish 4 0.8 3 0.7 10 0.7 0.2
Predatory zooplankton 12.391 0.7 6.9876 0.7 23.292 0.7 0.3
Large zooplankton 15.488 0.8 6.9876 0.6 23.292 0.6 0.3
Gelatinous zooplankton 3.0977 0.5 6.5 0.7 21.667 0.7 0.3
Copepods 20.919 0.1 23.151 0.1 77.169 0.4 0.3
Microzooplankton 16.83 0.1 38.833 0.1 129.44 0.4 0.3
Small phytoplankton 42.427 0.5 70.621 0.1 0.4
Large phytoplankton 27.029 0.8 41.677 0.1 0.4
PON 100 0.1 0.1 0.4
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Table A.11: Diet fraction input for the 24-group food web model.
Predator Prey Diet

fraction
Pedigree

Albatross Neon flying squid 0.68598 0.7
Boreal clubhook squid 0.01829
Gonatid squid 0.04573
Micronektonic squid 0.05
Pelagic forage fish 0.1
Saury 0.1

Mammals,sharks Neon flying squid 0.250098 0.776393
Boreal clubhook squid 0.00667251
Pomfret 0.105515
Gonatid squid 0.016676
Salmon 0.0953397
Micronektonic squid 0.133994
Mesopelagic fish 0.0502069
Pelagic forage fish 0.115384
Saury 0.226106

Neon flying squid Neon flying squid 0.295 0.6
Micronektonic squid 0.223
Mesopelagic fish 0.105
Pelagic forage fish 0.319
Saury 0.058

Orcas Albatross 0.00032 0.7
Mammals,sharks 0.11835
Neon flying squid 0.04573
Boreal clubhook squid 0.00122
Seabirds 1 0.00136
Pomfret 0.05833
Seabirds 2 0.00461
Gonatid squid 0.00305
Salmon 0.0528
Baleen whales 0.27536
Micronektonic squid 0.05
Pelagic forage fish 0.264
Saury 0.12498

Boreal clubhook squid Micronektonic squid 0.99 0.6
Pelagic forage fish 0.01

Seabirds 1 Micronektonic squid 0.427952 0.7
Pelagic forage fish 0.29494
Saury 0.277108

Pomfret Micronektonic squid 0.75 0.5
Mesopelagic fish 0.08
Saury 0.04
Predatory zooplankton 0.03
Large zooplankton 0.09
Copepods 0.01

Seabirds 2 Micronektonic squid 0.281625 0.7
Pelagic forage fish 0.277032
Saury 0.277032
Large zooplankton 0.0931553
Copepods 0.0711576

Gonatid squid Micronektonic squid 0.33 0.6
Pelagic forage fish 0.01
Predatory zooplankton 0.11325
Large zooplankton 0.30996
Copepods 0.23678

Salmon Micronektonic squid 0.0779714 0.1
Mesopelagic fish 0.106941
Pelagic forage fish 0.106941
Predatory zooplankton 0.00512718
Large zooplankton 0.468088
Gelatinous zooplankton 0.131654
Copepods 0.103278
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Table A.12: Diet fraction input for the 24-group food web model (continued).
Predator Prey Diet

fraction
Pedigree

Baleen whales Neon flying squid 0.022866 0.7
Boreal clubhook squid 0.000609
Pomfret 0.002917
Gonatid squid 0.001524
Salmon 0.0026399
Micronektonic squid 0.025
Mesopelagic fish 0.062499
Pelagic forage fish 0.076
Saury 0.00625
Predatory zooplankton 0.137281
Large zooplankton 0.375714
Copepods 0.287004

Micronektonic squid Micronektonic squid 0.05 0.7
Predatory zooplankton 0.16302
Large zooplankton 0.44617
Copepods 0.34082

Mesopelagic fish Predatory zooplankton 0.21 0.7
Large zooplankton 0.442
Copepods 0.348

Pelagic forage fish Predatory zooplankton 0.1716 0.7
Large zooplankton 0.46965
Copepods 0.35875

Saury Predatory zooplankton 0.13381 0.7
Large zooplankton 0.3662
Copepods 0.5

Jellyfish Predatory zooplankton 0.07978 0.7
Large zooplankton 0.21835
Gelatinous zooplankton 0.08185
Copepods 0.62

Predatory zooplankton Large zooplankton 0.19999 0.7
Copepods 0.8

Large zooplankton Copepods 0.4 0.566667
Microzooplankton 0.4
Large phytoplankton 0.2

Gelatinous zooplankton Copepods 0.25 0.7
Microzooplankton 0.25
Large phytoplankton 0.5

Copepods Microzooplankton 0.3 0.3
Small phytoplankton 0.3
Large phytoplankton 0.4

Microzooplankton Small phytoplankton 1 0.3
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Table A.13: Biogeochemical process-related parameters: Primary production
Parameter Symbol Group Value

Ammonium inhibition constant  PS 1.5 (mmol N m�3)�1

PL 1.5 (mmol N m�3)�1

Half-saturation constant for ammo-
nium

KNH4 PS 0.1 mmol N m�3

PL 0.3 mmol N m�3

Half-saturation constant for nitrate KNO3 PS 1 mmol N m�3

PL 3 mmol N m�3

Half-saturation constant for silica KSi PL 6 mmol Si m�3

Initial slope of P-I curve ↵ PS 0.017 (W m�2)�1 d�1

PL 0.016 (W m�2)�1 d�1

Light dissipation coefficient of seawater ↵
1

0.04 m�1

Maximum uptake rate at 0 deg C Vmax PS 0.4 d�1

PL 0.8 d�1

Phytoplankton self-shading coefficient ↵
2

0.04 m�1 (mmol N m�3)�1

Silica to nitrogen ratio RSi:N 2 mmol Si (mmol N)�1

Carbon to nitrogen ratio RC:N 6.625 mol C (mol N)�1

Temperature coefficient for photosyn-
thesis

Kgpp PS 0.0693 (deg C)�1

PL 0.0693 (deg C)�1

Empirical Fe:C function coefficient bFe PS 28.5 (mol C m�3)�1

PL 42.6 (mol C m�3)�1

Empirical Fe:C function power ↵Fe PS 0.21
PL 0.46

Fraction of iron remineralized frem PS 0.5
PL 0.5

Half-saturation constant for Fe:C KFe:C PS 12 µmol Fe (mol C)�1

PL 16.9 µmol Fe (mol C)�1

Timescale for iron uptake tFe PS 1 d
PL 1 d

Table A.14: Biogeochemical process-related parameters: Iron quota model
Parameter Symbol Group Value

Maximum Fe:N ratio RFe:Nmax PS 331.25 µmol Fe (mol N)�1

PL 3312.5 µmol Fe (mol N)�1

Half-saturation constant for iron KFe PS 0.6 µmol Fe m�3

PL 3.0 µmol Fe m�3

Half-saturation constant for internal
Fe:N ratio

KFe:N PS 66.25 µmol Fe (mol N)�1

PL 132.5 µmol Fe (mol N)�1

Iron uptake factor µFe:N 100 µmol Fe (mol N)�1

Background ligand concentration Ligbkg 1.0 µmol m�3

Half saturation constant for light effect
on ligand-binding

KIscav 1.0 W m�2

Lower limit of ligand binding under
low-light conditions

KLigLo 300 m3 (µmol)�1

Upper limit of ligand binding under
high-light conditions

KLigHi 0.1 m3 (µmol)�1

Iron scavenging coefficient ↵scav 50 yr�1

Fraction of iron remineralized, relative
to organic nitrogen

reff 0.25

Table A.15: Biogeochemical process-related parameters: Respiration
Parameter Symbol Group Value

Respiration rate at 0 deg C Res
0

PS 0.03 d�1

PL 0.03 d�1

Temperature coefficient for respiration KRes PS 0.0519 d�1

PL 0.0519 d�1
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Table A.16: Biogeochemical process-related parameters: Extracellular excretion
Parameter Symbol Group Value

Ratio of extracellular excretion to pho-
tosynthesis

� PS 0.135

PL 0.135

Table A.17: Biogeochemical process-related parameters: Grazing
Parameter Symbol Group Value

Grazing inhibition coefficient  gr ZP on PL 4.605 (mmol N m�3)�1

ZP on ZS 3.01 (mmol N m�3)�1

Grazing threshhold Bthresh ZS on PS 0.04 mmol N m�3

ZL on PS 0.04 mmol N m�3

ZL on PL 0.04 mmol N m�3

ZP on PL 0.04 mmol N m�3

ZL on ZS 0.04 mmol N m�3

ZP on ZS 0.04 mmol N m�3

ZP on ZL 0.04 mmol N m�3

Ivlev constant � ZS 1.4 (mmol N m�3)�1

ZL 1.4 (mmol N m�3)�1

ZP 1.4 (mmol N m�3)�1

Maximum grazing rate at 0 deg C gmax ZS on PS 0.8 d�1

ZL on PS 0.1 d�1

ZL on PL 0.4 d�1

ZP on PL 0.2 d�1

ZL on ZS 0.4 d�1

ZP on ZS 0.2 d�1

ZP on ZL 0.2 d�1

Temperature coefficient for grazing KGra ZS 0.0693 (deg C)�1

ZL 0.0693 (deg C)�1

ZP 0.0693 (deg C)�1

gel. zoo. 0.0693 (deg C)�1

pred. zoo. 0.0693 (deg C)�1

Mixed layer depth, annual average MLD 80 m
Mixed layer temperature, annual aver-
age

Tavg 8.26 deg C

Table A.18: Biogeochemical process-related parameters: Egestion and excretion
Parameter Symbol Group Value

Assimilation efficiency ↵eg ZS 0.7
ZL 0.7
ZP 0.7

Growth efficiency �eg ZS 0.3
ZL 0.3
ZP 0.3
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Table A.19: Biogeochemical process-related parameters: Decomposition
Parameter Symbol Group Value

Decomposition (or nitrification) rate VDec NH
4

to NO
3

0.03 d�1

PON to NH
4

0.1 d�1

PON to DON 0.1 d�1

DON to NH
4

0.02 d�1

Opal to SiOH
4

0.04 d�1

Temperature coefficient for decomposi-
tion

KDec NH
4

to NO
3

0.0693 (deg C)�1

PON to NH
4

0.0693 (deg C)�1

PON to DON 0.0693 (deg C)�1

DON to NH
4

0.0693 (deg C)�1

Opal to SiOH
4

0.0693 (deg C)�1

Table A.20: Biogeochemical process-related parameters: Mortality
Parameter Symbol Group Value

Mortality rate at 0 deg C Mor
0

PS 0.0585 d�1

PL 0.029 d�1

ZS 0.0585 d�1

ZL 0.0585 d�1

ZP 0.0585 d�1

Temperature coefficient for mortality KMor PS 0.0693 (deg C)�1

PL 0.0693 (deg C)�1

ZS 0.0693 (deg C)�1

ZL 0.0693 (deg C)�1

ZP 0.0693 (deg C)�1
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Table A.21: Derived parameters used in the equations in Appendix A.2. These parameters vary
over time as a function of the state variables from both the physical and biological models.

Parameter Name Symbol Definition

Nitrogen limitation LN
NO3

KNO3
+NO3

· exp (� NH
4

) +

NH4
KNH4

+NH4

Silica limitation LSi
SiOH4

KSiOH4
+SiOH4

Iron limitation LFe
R2

Fe:C
K2

Fe:C+R2
Fe:C

Iron limitation (quota model) LFe
BFe

KFe+BFe

Iron deficiency DFe
R2

Fe:N
K2

Fe:N+R2
Fe:N

f-ratio f

NO3
KNO3

+NO3
·exp(� NH4)

NO3
KNO3

+NO3
·exp(� NH4)+

NH4
KNH4

+NH4

Total nutrient limitation Lnut min (LN , LSi, LFe)

Total nutrient limitation (quota model) Lnut min (LN , LSi, DFe)

Light limitation Llight 1� exp

⇣
↵Iz

Vmax

⌘

Empirical Fe:C ratio R
0i bFe,iFe

aFe,i
z

Realized Fe:C ratio Ri
BFe,i

Bi·RC:N

Realized Fe:N ratio RFe:N
BFe,i

Bi

Ligand-binding parameter KLig 10

⇣
log10(KLigLo)�

Iz
KIscav+Iz

⌘
(

log10(KLigLo)�log10(KLigHi))
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Table A.22: Group-related, Ecopath-derived parameters for the water column ecosystem model, including mass-balanced biomass (B⇤), growth
efficiency (GE), non-pedatory mortality flux (M0), and unassimilated fraction (GS). Where values vary across ensemble members, mean, standard
deviation, minimum, and maximum values, calculated across the 500 ensemble members, are given

Group B⇤ (mmol N m�2) GE M0 (mmol N m�2 s�1) GS

mean std min max mean std min max mean std min max

Albatross 1.48e-08 4.36e-09 7.59e-09 2.26e-08 0.000609 0.000155 0.000323 0.001 2.21e-17 9.08e-18 5.68e-18 4.81e-17 0.2
Mammals,sharks 1.94e-05 9.2e-06 6.69e-06 4.24e-05 0.0143 0.00533 0.00485 0.0299 1.12e-13 6.53e-14 1.79e-14 3.53e-13 0.2
Neon flying squid 0.000171 7.53e-05 3.41e-05 0.000304 0.646 0.276 0.192 1.59 6.14e-12 5.55e-12 3.49e-14 2.73e-11 0.2
Orcas 1.07e-08 3.01e-09 5.32e-09 1.58e-08 0.00232 0.000601 0.0012 0.00385 8.72e-18 3.2e-18 3.05e-18 1.74e-17 0.2
Boreal clubhook squid 4.78e-06 2e-06 9.3e-07 8.14e-06 0.408 0.228 0.0961 1.27 3.24e-13 2.14e-13 6.75e-17 9.84e-13 0.2
Seabirds 1 6.33e-08 1.76e-08 3.13e-08 9.38e-08 0.00089 0.000233 0.000454 0.0015 1.68e-16 6.25e-17 4.74e-17 3.42e-16 0.2
Pomfret 8.64e-05 3.4e-05 1.59e-05 0.000142 0.2 1.75e-15 0.2 0.2 1.21e-12 8.56e-13 8.47e-15 3.77e-12 0.2
Seabirds 2 2.13e-07 6.02e-08 1.07e-07 3.2e-07 0.000941 0.000248 0.000503 0.00156 6.57e-16 2.55e-16 2.05e-16 1.39e-15 0.2
Gonatid squid 1.19e-05 5.11e-06 2.29e-06 2.04e-05 0.403 0.217 0.101 1.25 8.46e-13 5.65e-13 9.28e-15 2.4e-12 0.2
Salmon 7.13e-05 2.02e-05 3.59e-05 0.000107 0.141 0.0138 0.112 0.174 3.06e-12 1.19e-12 1.41e-13 6.03e-12 0.2
Baleen whales 1.28e-05 3.58e-06 6.42e-06 1.91e-05 0.00423 0.00114 0.00213 0.00709 7.14e-15 3.07e-15 8.34e-16 1.54e-14 0.2
Micronektonic squid 0.000391 0.000345 7.6e-05 0.00327 0.27 0.157 0.0527 0.903 3.3e-12 1.91e-12 1.02e-12 1.87e-11 0.2
Mesopelagic fish 0.00168 0.000769 0.000354 0.00304 0.384 0.254 0.0836 1.42 4.03e-11 2.77e-11 2.77e-13 1.27e-10 0.2
Pelagic forage fish 0.000377 0.000253 4.32e-05 0.0015 0.365 0.235 0.0779 1.47 1.55e-12 8.19e-13 2.96e-13 4.75e-12 0.2
Saury 0.000193 6.81e-05 3.93e-05 0.000305 0.281 0.183 0.0554 1.02 6.26e-12 4.68e-12 2.31e-14 2.19e-11 0.2
Jellyfish 0.00141 0.00071 0.000316 0.00271 0.385 0.261 0.0551 1.6 1.34e-10 9.2e-11 1.22e-11 4.31e-10 0.2
Predatory zooplankton 0.00367 0.00171 0.00142 0.00792 0.463 0.287 0.0644 1.6 7.13e-10 5.37e-10 1.29e-11 2.72e-09 0.3
Large zooplankton 0.00613 0.00229 0.00136 0.0105 0.45 0.217 0.0898 1.12 7.65e-10 6.13e-10 1.97e-13 2.85e-09 0.3
Gelatinous zooplankton 0.00117 0.000339 0.000588 0.00175 0.387 0.265 0.06 1.51 2.07e-10 1.25e-10 1.66e-12 5.91e-10 0.3
Copepods 0.00787 0.000478 0.0071 0.00867 0.372 0.0754 0.209 0.537 2.01e-09 1.14e-09 4.75e-12 5.28e-09 0.3
Microzooplankton 0.00637 0.000369 0.00571 0.00698 0.339 0.0816 0.201 0.537 1.62e-09 1.15e-09 2.32e-12 5.11e-09 0.3
Small phytoplankton 0.0189 0.00338 0.00907 0.024 0 0 0 0 1.28e-08 8.25e-09 5.77e-12 3.54e-08 0
Large phytoplankton 0.012 0.00356 0.00448 0.0183 0 0 0 0 8.11e-09 4.83e-09 7.81e-15 1.87e-08 0
PON 0.0379 0.0022 0.034 0.0415 0 0 0 0 0 0 0 0 0
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Table A.23: Flux-related, Ecopath-derived parameters for the water column ecosystem model, including mass-balanced prey-to-predator flux (Q⇤),
functional response top-down parameter (X), functional response bottom-up parameter (D), and functional response exponent (✓). Where values vary
across ensemble members, mean, standard deviation, minimum, and maximum values, calculated across the 500 ensemble members, are given

Predator Prey Q⇤ (mmol N m�2 s�1) X D ✓

mean std min max mean std min max

Albatross Neon flying squid 2.57e-14 8.76e-15 9.84e-15 5.46e-14 2 1e+03 0 1e+03 1e+03 2
Albatross Boreal clubhook squid 7.43e-16 4.24e-16 1.08e-16 2.51e-15 2 1e+03 0 1e+03 1e+03 2
Albatross Gonatid squid 1.88e-15 1.03e-15 3.42e-16 6.64e-15 2 1e+03 0 1e+03 1e+03 2
Albatross Micronektonic squid 1.96e-15 1.15e-15 2.92e-16 7.07e-15 2 1e+03 0 1e+03 1e+03 2
Albatross Pelagic forage fish 4e-15 2.27e-15 5.49e-16 1.33e-14 2 1e+03 0 1e+03 1e+03 2
Albatross Saury 4.01e-15 2.31e-15 4.61e-16 1.48e-14 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Neon flying squid 2.06e-12 1.32e-12 3.2e-13 7.83e-12 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Boreal clubhook squid 5.42e-14 3.6e-14 4.95e-15 2.02e-13 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Pomfret 8.2e-13 4.73e-13 1.35e-13 2.9e-12 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Gonatid squid 1.41e-13 9.48e-14 1.74e-14 5.69e-13 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Salmon 7.9e-13 4.32e-13 1.51e-13 2.64e-12 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Micronektonic squid 1.14e-12 7.98e-13 1.49e-13 5.9e-12 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Mesopelagic fish 4.18e-13 2.85e-13 3.32e-14 1.76e-12 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Pelagic forage fish 9.59e-13 6.49e-13 1.03e-13 3.9e-12 2 1e+03 0 1e+03 1e+03 2
Mammals,sharks Saury 1.87e-12 1.27e-12 2.17e-13 7.88e-12 2 1e+03 0 1e+03 1e+03 2
Neon flying squid Neon flying squid 7.35e-12 4.91e-12 5.37e-13 3.16e-11 2 1e+03 0 1e+03 1e+03 2
Neon flying squid Micronektonic squid 6.51e-12 4.89e-12 4.39e-13 3.14e-11 2 1e+03 0 1e+03 1e+03 2
Neon flying squid Mesopelagic fish 3e-12 2.3e-12 1.2e-13 1.25e-11 2 1e+03 0 1e+03 1e+03 2
Neon flying squid Pelagic forage fish 9.49e-12 7.14e-12 5.08e-13 4.07e-11 2 1e+03 0 1e+03 1e+03 2
Neon flying squid Saury 1.56e-12 1.2e-12 8.73e-14 8.18e-12 2 1e+03 0 1e+03 1e+03 2
Orcas Albatross 1.17e-18 6.34e-19 1.7e-19 3.52e-18 2 1e+03 0 1e+03 1e+03 2
Orcas Mammals,sharks 4.54e-16 2.58e-16 5.37e-17 1.46e-15 2 1e+03 0 1e+03 1e+03 2
Orcas Neon flying squid 1.76e-16 8.56e-17 3.17e-17 5.03e-16 2 1e+03 0 1e+03 1e+03 2
Orcas Boreal clubhook squid 4.79e-18 2.31e-18 1.08e-18 1.43e-17 2 1e+03 0 1e+03 1e+03 2
Orcas Seabirds 1 5.26e-18 2.98e-18 8.76e-19 1.79e-17 2 1e+03 0 1e+03 1e+03 2
Orcas Pomfret 2.3e-16 9.86e-17 5.73e-17 5.37e-16 2 1e+03 0 1e+03 1e+03 2
Orcas Seabirds 2 1.76e-17 9.23e-18 2.8e-18 5.51e-17 2 1e+03 0 1e+03 1e+03 2
Orcas Gonatid squid 1.18e-17 5.71e-18 2.07e-18 3.29e-17 2 1e+03 0 1e+03 1e+03 2
Orcas Salmon 2.04e-16 7.17e-17 7.5e-17 4.4e-16 2 1e+03 0 1e+03 1e+03 2
Orcas Baleen whales 1.03e-15 4.88e-16 2.08e-16 3e-15 2 1e+03 0 1e+03 1e+03 2
Orcas Micronektonic squid 1.94e-16 1.06e-16 3.32e-17 6.35e-16 2 1e+03 0 1e+03 1e+03 2
Orcas Pelagic forage fish 1.01e-15 4.62e-16 2.13e-16 2.56e-15 2 1e+03 0 1e+03 1e+03 2
Orcas Saury 4.64e-16 2.35e-16 7.27e-17 1.42e-15 2 1e+03 0 1e+03 1e+03 2
Boreal clubhook squid Micronektonic squid 1.08e-12 6.07e-13 1.09e-13 2.86e-12 2 1e+03 0 1e+03 1e+03 2
Boreal clubhook squid Pelagic forage fish 1.45e-14 1.44e-14 5.85e-16 1.18e-13 2 1e+03 0 1e+03 1e+03 2
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Table A.24: Flux-related, Ecopath-derived parameters for the water column ecosystem model (continued).
Predator Prey Q⇤ (mmol N m�2 s�1) X D ✓

mean std min max mean std min max

Seabirds 1 Micronektonic squid 8.28e-14 3.57e-14 1.96e-14 1.94e-13 2 1e+03 0 1e+03 1e+03 2
Seabirds 1 Pelagic forage fish 6.01e-14 2.99e-14 1.07e-14 1.71e-13 2 1e+03 0 1e+03 1e+03 2
Seabirds 1 Saury 5.47e-14 2.84e-14 9.13e-15 1.47e-13 2 1e+03 0 1e+03 1e+03 2
Pomfret Micronektonic squid 7.36e-12 3.42e-12 1.13e-12 1.81e-11 2 1e+03 0 1e+03 1e+03 2
Pomfret Mesopelagic fish 9.05e-13 6.44e-13 7.34e-14 4.41e-12 2 1e+03 0 1e+03 1e+03 2
Pomfret Saury 4.57e-13 3.17e-13 3.06e-14 2.2e-12 2 1e+03 0 1e+03 1e+03 2
Pomfret Predatory

zooplankton
3.41e-13 2.49e-13 2.37e-14 1.59e-12 2 1e+03 0 1e+03 1e+03 2

Pomfret Large zooplankton 9.92e-13 6.56e-13 6.5e-14 3.67e-12 2 1e+03 0 1e+03 1e+03 2
Pomfret Copepods 1.13e-13 6.98e-14 1.28e-14 5.13e-13 2 1e+03 0 1e+03 1e+03 2
Seabirds 2 Micronektonic squid 2.02e-13 9.16e-14 4.44e-14 6.04e-13 2 1e+03 0 1e+03 1e+03 2
Seabirds 2 Pelagic forage fish 2.01e-13 1.01e-13 3.58e-14 6.42e-13 2 1e+03 0 1e+03 1e+03 2
Seabirds 2 Saury 1.98e-13 9.4e-14 4.29e-14 5.6e-13 2 1e+03 0 1e+03 1e+03 2
Seabirds 2 Large zooplankton 7.15e-14 3.48e-14 1.22e-14 2.01e-13 2 1e+03 0 1e+03 1e+03 2
Seabirds 2 Copepods 5.44e-14 2.32e-14 1.66e-14 1.65e-13 2 1e+03 0 1e+03 1e+03 2
Gonatid squid Micronektonic squid 9.02e-13 5.9e-13 5.53e-14 3.25e-12 2 1e+03 0 1e+03 1e+03 2
Gonatid squid Pelagic forage fish 2.94e-14 2.22e-14 1.26e-15 1.37e-13 2 1e+03 0 1e+03 1e+03 2
Gonatid squid Predatory

zooplankton
3.3e-13 2.3e-13 1.11e-14 1.11e-12 2 1e+03 0 1e+03 1e+03 2

Gonatid squid Large zooplankton 8.73e-13 5.58e-13 5.5e-14 3.05e-12 2 1e+03 0 1e+03 1e+03 2
Gonatid squid Copepods 6.87e-13 4.2e-13 6.89e-14 2.22e-12 2 1e+03 0 1e+03 1e+03 2
Salmon Micronektonic squid 2.25e-12 1.19e-12 3.82e-13 6.51e-12 2 1e+03 0 1e+03 1e+03 2
Salmon Mesopelagic fish 2.96e-12 1.46e-12 5.14e-13 7.65e-12 2 1e+03 0 1e+03 1e+03 2
Salmon Pelagic forage fish 3.07e-12 1.61e-12 4.94e-13 9.36e-12 2 1e+03 0 1e+03 1e+03 2
Salmon Predatory

zooplankton
1.46e-13 8.08e-14 2.17e-14 4.81e-13 2 1e+03 0 1e+03 1e+03 2

Salmon Large zooplankton 1.24e-11 4.48e-12 3.1e-12 2.49e-11 2 1e+03 0 1e+03 1e+03 2
Salmon Gelatinous

zooplankton
3.67e-12 1.88e-12 4.84e-13 1.03e-11 2 1e+03 0 1e+03 1e+03 2

Salmon Copepods 2.93e-12 1.08e-12 8.73e-13 6.95e-12 2 1e+03 0 1e+03 1e+03 2
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Table A.25: Flux-related, Ecopath-derived parameters for the water column ecosystem model (continued).
Predator Prey Q⇤ (mmol N m�2 s�1) X D ✓

mean std min max mean std min max

Baleen whales Neon flying squid 4.62e-14 2.29e-14 7.95e-15 1.32e-13 2 1e+03 0 1e+03 1e+03 2
Baleen whales Boreal clubhook squid 1.17e-15 6.03e-16 2.71e-16 3.24e-15 2 1e+03 0 1e+03 1e+03 2
Baleen whales Pomfret 5.82e-15 2.65e-15 1.38e-15 1.56e-14 2 1e+03 0 1e+03 1e+03 2
Baleen whales Gonatid squid 3.12e-15 1.56e-15 6.28e-16 9.66e-15 2 1e+03 0 1e+03 1e+03 2
Baleen whales Salmon 5.33e-15 1.86e-15 1.81e-15 1.17e-14 2 1e+03 0 1e+03 1e+03 2
Baleen whales Micronektonic squid 5e-14 2.71e-14 9.15e-15 1.4e-13 2 1e+03 0 1e+03 1e+03 2
Baleen whales Mesopelagic fish 1.25e-13 6.71e-14 1.93e-14 3.59e-13 2 1e+03 0 1e+03 1e+03 2
Baleen whales Pelagic forage fish 1.48e-13 7.72e-14 2.25e-14 4.47e-13 2 1e+03 0 1e+03 1e+03 2
Baleen whales Saury 1.29e-14 7.32e-15 1.6e-15 4.04e-14 2 1e+03 0 1e+03 1e+03 2
Baleen whales Predatory

zooplankton
2.76e-13 1.46e-13 5.12e-14 8.78e-13 2 1e+03 0 1e+03 1e+03 2

Baleen whales Large zooplankton 7.11e-13 2.76e-13 2.25e-13 1.78e-12 2 1e+03 0 1e+03 1e+03 2
Baleen whales Copepods 5.75e-13 2.09e-13 1.72e-13 1.25e-12 2 1e+03 0 1e+03 1e+03 2
Micronektonic squid Micronektonic squid 1.01e-11 1.49e-11 4e-13 1.35e-10 2 1e+03 0 1e+03 1e+03 2
Micronektonic squid Predatory

zooplankton
3.17e-11 4.28e-11 1.57e-12 4.82e-10 2 1e+03 0 1e+03 1e+03 2

Micronektonic squid Large zooplankton 8.07e-11 9.26e-11 5.6e-12 9.08e-10 2 1e+03 0 1e+03 1e+03 2
Micronektonic squid Copepods 6.58e-11 8.2e-11 5.39e-12 8.47e-10 2 1e+03 0 1e+03 1e+03 2
Mesopelagic fish Predatory

zooplankton
3.38e-11 2.58e-11 2.18e-12 1.83e-10 2 1e+03 0 1e+03 1e+03 2

Mesopelagic fish Large zooplankton 6.77e-11 4.58e-11 3.91e-12 2.31e-10 2 1e+03 0 1e+03 1e+03 2
Mesopelagic fish Copepods 5.61e-11 3.82e-11 4.06e-12 2.06e-10 2 1e+03 0 1e+03 1e+03 2
Pelagic forage fish Predatory

zooplankton
1.03e-11 9.67e-12 8.2e-13 7.52e-11 2 1e+03 0 1e+03 1e+03 2

Pelagic forage fish Large zooplankton 2.78e-11 2.35e-11 1.84e-12 1.48e-10 2 1e+03 0 1e+03 1e+03 2
Pelagic forage fish Copepods 2.22e-11 1.92e-11 1.66e-12 1.58e-10 2 1e+03 0 1e+03 1e+03 2
Saury Predatory

zooplankton
6.17e-12 4.45e-12 3.37e-13 2.5e-11 2 1e+03 0 1e+03 1e+03 2

Saury Large zooplankton 1.72e-11 1.1e-11 1.74e-12 5.81e-11 2 1e+03 0 1e+03 1e+03 2
Saury Copepods 2.44e-11 1.45e-11 2.52e-12 7.74e-11 2 1e+03 0 1e+03 1e+03 2
Jellyfish Predatory

zooplankton
3.55e-11 2.93e-11 2.15e-12 1.75e-10 2 1e+03 0 1e+03 1e+03 2

Jellyfish Large zooplankton 9.09e-11 6.77e-11 4.18e-12 4.12e-10 2 1e+03 0 1e+03 1e+03 2
Jellyfish Gelatinous

zooplankton
3.58e-11 3.17e-11 1.92e-12 1.99e-10 2 1e+03 0 1e+03 1e+03 2

Jellyfish Copepods 2.67e-10 1.92e-10 2.03e-11 1.01e-09 2 1e+03 0 1e+03 1e+03 2
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Table A.26: Flux-related, Ecopath-derived parameters for the water column ecosystem model (continued).
Predator Prey Q⇤ (mmol N m�2 s�1) X D ✓

mean std min max mean std min max

Predatory
zooplankton

Large zooplankton 3.92e-10 2.36e-10 2.98e-11 1.51e-09 1e+03 44.8 26.3 11.3 177 2

Predatory
zooplankton

Copepods 1.65e-09 7.99e-10 2.88e-10 4e-09 1e+03 10.6 5.02 3.92 25.6 2

Large zooplankton Copepods 1.5e-09 7.67e-10 2.24e-10 5.01e-09 1e+03 19.4 7.89 6.78 45.8 2
Large zooplankton Microzooplankton 1.47e-09 7.21e-10 2.13e-10 3.63e-09 1e+03 19.5 7.79 7.6 45.2 2
Large zooplankton Large phytoplankton 7.55e-10 3.98e-10 1.25e-10 2.61e-09 1e+03 21.9 14.9 6.45 88.6 2
Gelatinous
zooplankton

Copepods 1.96e-10 1.1e-10 2.84e-11 6e-10 1e+03 30.8 16.7 10 114 2

Gelatinous
zooplankton

Microzooplankton 1.98e-10 1.08e-10 3.08e-11 6.14e-10 1e+03 31 17.5 10.3 102 2

Gelatinous
zooplankton

Large phytoplankton 3.91e-10 2.08e-10 6.52e-11 1.07e-09 1e+03 13 6.39 6.02 39.5 2

Copepods Microzooplankton 4.61e-09 9.88e-10 2.54e-09 7.3e-09 1e+03 14.8 3.24 8.44 26.9 2
Copepods Small phytoplankton 4.95e-09 1.42e-09 2.39e-09 1.07e-08 1e+03 3.54 0.939 1.58 6.36 2
Copepods Large phytoplankton 6.61e-09 1.75e-09 3.18e-09 1.26e-08 1e+03 10.5 2.56 5.07 19.1 2
Microzooplankton Small phytoplankton 2.46e-08 6e-09 1.46e-08 3.83e-08 1e+03 4.52 1.06 2.89 6.72 2
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APPENDIX B

Software documentation for mixed_layer model with

biological modules

B.1 Overview

This section provides detailed documentation of the Matlab code package developed for this dis-

sertation, which will be made available for public download. The central component of this code

is the mixed_layer package, which implements the one-dimensional physical model within which

all simulations discussed in this thesis were run. The mixed_layer package also provides a vari-

ety of interchangeable biological modules that can be run within this physical model, including

the biogeochemical-only module used to calculate initial Ecopath values for the planktonic groups

(nemurokak.m) and the full end-to-end ecosystem model (wce.m).

In Section B.2, we provide a short user’s manual for the mixed_layer.m code. This is not

intended as a thorough tutorial, but should give a basic overview of how the code is designed to be

used for both simple and complex simulations. Section B.3 provides detailed documentation of each

individual Matlab function provided in the package.

B.2 The mixed_layer (with biology) toolbox

B.2.1 Code organization and installation

The distributed code includes four folders:
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• mixed_layer: This folder holds the main mixed_layer function, as well as helper functions for

reading the output of mixed_layer simulations. This folder also holds three subfolders. The

biomodules folder includes the various biological modules that can be paired with mixed_layer.

The private folder holds several private subfunctions exclusive to the mixed_layer.m parent

function. The defaultdata folder includes physical forcing datasets that the model uses as

defaults.

• setup: This folder holds setup scripts used to parameterize the mixed_layer model with water

column ecosystem module for the Eastern Subarctic Gyre ecosystem simulations.

• utilities: This folder holds all children functions required to run any of the abovementioned

functions. This includes subfunctions associated with the various biological routines as well as

several general utilities that I have developed as part of my own Matlab library.

• fex: This folder includes functions I acquired via the MatlabCentral File Exchange (http:

//www.mathworks.com/matlabcentral/fileexchange/). They are written and maintained

by third parties, and therefore I do not document them here, but simply provide a reference

to each.

In addition to the code provided in these folders, the mixed_layer model requires three third-party

Matlab toolboxes and the NCO utilities to run:

• Rich Signell’s RPSstuff toolbox: http://woodshole.er.usgs.gov/operations/sea-mat/

RPSstuff-html/index.html

• Phil Morgan’s seawater toolbox: http://www.marine.csiro.au/datacentre/processing.

htm

• mexnc and snctools: http://mexcdf.sourceforge.net/. Matlab introduced native netCDF

file support in version R2009a, about halfway through the development process of this code. In

most areas, I have attempted to migrate the important netCDF-related coding to this native

interface, rather than the external mexnc package on which I had previously relied. However,

due in part to attempts to keep back-compatibility and in part to time restrictions, there

are several helper functions that still rely on the external toolbox. Note that the third-party

NetCDF Toolbox (designed for Matlab v5/6) is not compatible with the mixed_layer code,

and may cause filename clashes if it is installed.

104

http://www.mathworks.com/matlabcentral/fileexchange/
http://www.mathworks.com/matlabcentral/fileexchange/
http://woodshole.er.usgs.gov/operations/sea-mat/RPSstuff-html/index.html
http://woodshole.er.usgs.gov/operations/sea-mat/RPSstuff-html/index.html
http://www.marine.csiro.au/datacentre/processing.htm
http://www.marine.csiro.au/datacentre/processing.htm
http://mexcdf.sourceforge.net/


• NetCDF Operators (NCO): http://nco.sourceforge.net/. These command-line programs

(specifically ncrcat), need to be installed and accessible to Matlab via calls to the operating

system (i.e. system('ncrcat ��version') should return a valid result within Matlab).

To use this software, the four folders listed above (mixed_layer, setup, utilities, and fex), as well

as the three outside toolboxes, must be added to the Matlab search path (via addpath, pathtool,

File > Set Path, etc).

As one final note, within the mixed_layer code (in the initialize.m subfunction), I use the

smooth.m function, which is from Matlab’s Curve Fitting toolbox. This function is used to cal-

culate running means in place of a simple filter.m call because it deals with edge cases in a more

desirable manner; however, replacing the former with the latter is an easy modification in one does

not have access to the Curve Fitting Toolbox. Beyond that, no additional Mathworks toolboxes

should be required to run the code.

Below is a brief description of all functions included in this package; see Section B.3 for the

complete description and calling syntax of each. Figure B.1 on page 109 diagrams the calling tree

for the entire program.

Folder: fex

consolidator written by John D’Errico, http://www.mathworks.com/matlabcentral/

fileexchange/8354

mergestruct written by Jos van der Geest, http://www.mathworks.com/matlabcentral/

fileexchange/7842 (note: named catstruct originally, changed due to

name conflict with my own function)

ode4 written by The Mathworks, http://www.mathworks.com/support/

tech-notes/1500/1510.html#fixed

parseArgs written by Aslak Grinsted, http://www.mathworks.com/matlabcentral/

fileexchange/3696

parse_pv_pairs written by John D’Errico, http://www.mathworks.com/matlabcentral/

fileexchange/9082

readtext written by Peder Axensten, http://www.mathworks.com/matlabcentral/

fileexchange/10946

round2 written by Robert Bernis, http://www.mathworks.com/matlabcentral/

fileexchange/4261
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subaxis written by Aslak Grinsted, http://www.mathworks.com/matlabcentral/

fileexchange/3696

tlabel written by Carlos Adrian Vargas Aguilera, http://www.mathworks.com/

matlabcentral/fileexchange/19314

uniquetol written by Siyi Deng, http://www.mathworks.com/matlabcentral/

fileexchange/27498

wreshape written by John D’Errico, no longer available on File Exchange

Folder: mixed_layer

mixed_layer Runs a 1-D physical model of a water column

plotmixed Plots results of the mixed_layer model

readmixed Read mixed_layer output into a structure

recovercrashed Create netcdf output for a partially-run mixed_layer sim

Folder: mixed_layer/biomodules

biomodule Template biological module for mixed layer model

nemurokak NEMURO, with iron and grazing modifications

np Nutrient-phytoplankton biological module

npz Nutrient-phytoplankton-zooplankton biological module

npzd Nutrient-phytoplankton-zooplankton-detritus biological module

tracer Generic tracer

tracerforced Generic tracer with deep-water concentration held constant

wce Water column ecosystem biological module

Folder: mixed_layer/private

archivemldata Write mixed_layer results to file

binary2netcdf Convert temporary binary output file to netcdf

calcheat Calculate heating factors

clearsky Calculate clear-sky irradiance

initbiorelax Sets up relaxation for biological variables

initialize Initialize parameters for mixed_layer model

initinterpdata Initialize datasets for later interpolation
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mixtracer Calculates diffusive mixing of a tracer in the mixed_layer model

mixturb_my Calculate and mix terms related to turbulence and energy

mycoef Calculate mixing coefficients

parseinput Parse and check all input variables

solve_velocities Steps the equations of motion forward to solve for new

verticalflux Calculates vertical movement within mixed layer model

Folder: setup

esabgcsetup Step 2 of ESA mixed_layer runs: biogeochemistry

esafoodwebsetup Step 3 of ESA mixed_layer runs: food webs

esaphysicssetup Step 1 of ESA mixed_layer runs: physics

formatfornemurokak Reformat data for nemurokak run

formatforwce Reformat input data for wce run

runmixedlayer Run mixed_layer model for multiple inputs

Folder: utilities

aggregate Aggregate values into cell array

calcclusteredparams Calculates new Ewe input params for clustered model

cell2matfill Converts a cell array to a matrix filling in empty cells

cellstr2 Create cell array of strings from character array.

climatology Creates climatology from timeseries

cptcmap Apply a .cpt file as colormap to an axis

createensemble2 Create an ensemble of Ecopath models

ecopathinputcheck Checks and fixes input in an Ewe input structure

ecopathinputinfo Table of dimesions and units for ecopath input fields

ecopathlite Rewrite of Ecopath algorithms

endonly Grab only last row of a 3-dimensional array

eweunitconvert Convert Ewe input structure between units

fluxread Read and reformat flux data from nemurokak or wce run

integratebio Integrate biology in mixed_layer module

ivlev2forage Choose D to match foraging arena func. res. to Ivlev

listfluxes Return indices of fluxes in nemurokak or wce model
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minmax Returns minimum and maximum value in the given array

nanmean Mean value, ignoring NaNs.

ncvarsget Read several variables from a netcdf file

nemuroecopathdata Calculates B,P/B,etc for NEMURO run

nemuroflexinput Returns paramters for a nemuroflex simulation

nemuroinputparser Checks and returns user input and defaults for NEMURO

nemurokakode My version of NEMURO

nemvarnames Returns cell array holding NEMURO variable names

ode4splitsnonneg Like ode4, but returns intermediate components, no negative

odewrap Wrapper for ODE solvers with more flexible input and output

parsepv Parses parameter/value pairs

photosynthesis Calculate growth due to photosynthesis

regexpfound Determine whether a regular expression is in a string

sh2dewpoint Calculate dewpoint temperature based on specific humidity

sortewein Sort groups in Ewe input structure by trophic level

suplabel Create title, xlabel, and ylabel for group of axes

trophiclevel Estimates trophic level of food web members

wceode Water column ecosystem model, main ODE function

B.2.2 Usage guide

While I made every attempt possible to fully document all the code associated with this thesis

such that others besides myself could work with this model, the setup process is still a somewhat

complicated. A single iteration of the model with simple biology (e.g. a single nutrient, single

phytoplankton module) requires a large collection of input variables and forcing datasets. Adding the

module for the water column ecosystem requires hundreds of additional input variables, and running

a full ensemble adds several more setup steps. This section provides instructions for taking the

publicly-available code and running a few simulations, ranging from a simple nutrient-phytoplankton

model to the full climatologically-forced Eastern Subarctic Gyre ensemble described in Chapter 3.

Of the many functions provided, users should only directly access those in the mixed_layer (top

level) and setup folders. The mixed_layer.m function is the primary tool. Relying on all the default

values for the input variables, one can run an example physics-only simulation. The physical forcings

included in this default dataset describe a one-year period (1976-77) for the Scotian Shelf region, off
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calcclusteredparams

ecopathlite

sortewein

consolidator

aggregate

nanmean

ecopathinputcheck

ecopathinputinfo

trophiclevel

eweunitconvert

parse_pv_pairs

ivlev2forage

mergestruct

ode4

parseArgs

readtext

round2

subaxis

tlabel

uniquetol

wreshape

cell2matfill

cellstr2

cptcmap

endonly

minmax

ncvarsget

odewrap

parsepv

regexpfound

suplabel

climatology

photosynthesis

sh2dewpoint
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Figure B.1: Calling tree for all functions provided in the mixed_layer code package. Colors indicate
which functions are found in each folder: mixed_layer (orange), private (pink), biomodules (blue),
setup (green), utilities (yellow) or fex (turquoise).

109



the coast of Nova Scotia, Canada; they were compiled by Charlie Stock for a study of phytoplankton

blooms (Song et al. , 2011). The command mixed_layer('test') will run the simulation and save

the output to the file test.nc. A few status messages will be printed to the command line while the

simulation is running to notify users of the model’s progress. The warnings regarding missing input

data simply point out that the forcing datasets are missing an hour on each end (the model starts

at midnight, and the data at 1:00am); this type of warning will always be issued if input forcing

data grids don’t extend completely to the edges of the model’s temporal and spatial grids, such that

model values must be extrapolated.

Data from the netCDF output file can be read into Matlab most easily via the readmixed.m

function. This function can also be used to list the names of the output variables included in the

file via readmixed('test', 'list').

One can also analyze the output files outside of Matlab using various netCDF utilities, but my

use of non-standard coordinate variables may cause some confusion in external software designed

for oceanographic data. Originally, I wrote the code to output to Matlab’s .mat files, but migrated

to the use of netCDF so one could access partial slices of often very large output files. Because of

this, the netCDF files generated do not follow COARDS standards (as used by climate models),

particularly with regards to the time dimension.

Simple plots of the various output variables can be generated via the plotmixed routine, which

will plot each variable versus time and, if applicable, depth.

Biology can be added to the mixed_layer model via the 'biofun' input variable, which holds a

function_handle corresponding to one of the functions in the mixed_layer/biomodules folder (these

functions follow a very specific format; see biomodules/biomodule.m for an overview if you intend

to add to this library). For example, the np module adds a nutrient-phytoplankton model based on

a simple box model described in Sarmiento & Gruber (2006). To run the model with this module,

a few more input variables are needed:

nut = [... % A rough starting
0 20 % nutrient profile

�150 40];

phyto = [... % Seed a small population
0 0.1 % of phytoplankton throughout

�150 0.1]; % the water colum

kn = 0.1; % Half�saturation constant
lambda = 0.05/86400; % Loss rate, /d
mu = 0.5;

% Run model
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mixed_layer('nptest', 'biofun', @np, 'n', nut, 'p', phyto, 'kn', kn, ...
'loss', lambda, 'remin', mu);

In the setup folder, three scripts are provided to compile input variables for the mixed_layer

function specific to the Eastern Subarctic Pacific region: esaphysicssetup, esabgcsetup, and esafood-

websetup, which gather the physical, biogeochemical, and food web-related variables, respectively.

The data output by each of these three functions can then be passed to either formatfornemuro.m

or formatforwce.m to create a structure of input data that can be fed into mixed_layer.m. The fol-

lowing script will run a 5-year simulation of the water column ecosystem model, with climatological

forcing, for a single food web ensemble member.

Nyf = esaphysicssetup(2, 'nyf');
Nyf.eyear = 1904;

Bgc = esabgcsetup;

Fw = esafoodwebsetup(Nyf, Bgc, 500, 'runnemuro', true, ...
'cvtparams', {'wwCfrac', 0.03});

In = formatforwce(Nyf, Bgc, Fw);

mixed_layer('wceexample', In(1));

To run an entire ensemble, one can repeat the mixed_layer call from the above example for each

index in the In structure variable. Alternatively, one can use the runmixedlayer.m function, which

performs this looping as well as some simple file organization:

Nyf = esaphysicssetup(2, 'nyf');
Nyf.eyear = 1904;

Bgc = esabgcsetup;

Fw = esafoodwebsetup(Nyf, Bgc, 500, 'runnemuro', true, ...
'cvtparams', {'wwCfrac', 0.03});

In = formatforwce(Nyf, Bgc, Fw);

runmixed(In(1:50), 'wceexample', '.', false, 1);

The code above will create a folder in the current directory called wceexample, and will place

sequentially-named output files for a 50-member ensemble in this folder. If one has the Parallel

Computing Toolbox, the 4th and 5th input variables to this function can be set so that the 50

simulations are run in parallel to each other (note that this only parallelizes the looping of calls to

mixed_layer, and not any of the calculations within mixed_layer itself).
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B.3 Function reference

The following sections document all functions provided within the mixed_layer code distribution.

Each section provides calling syntax, a brief description of the function, and a description of all

input and output variables required by and returned by the function. These descriptions can also

be accessed via the help command from the Matlab command line (for functions residing in either

the mixed_layer/biomodules or mixed_layer/private folders, one must change directories to those

locations to access the help).

B.3.1 aggregate

[xcon, yagg] = aggregate(x, y)
[xcon, yagg] = aggregate(x, y, fun)

This function groups together values of y, based on category values in x.
It performs more or less like accumaray(x,y,[a b]. @(x) {x}), except
allows x to be any value, not just indices, and y can have any number of
columns.

Input variables:

x: n x 1 array, categories, can be either numeric or a cell array
of strings

y: n x m array, values to be grouped

fun: function handle. If included, this function is applied to the
grouped values of y

Output variables:

xcon: unique values of x

yagg: cell array of y values corresponding to each x.

B.3.2 archivemldata

avg = archivemldata(Grd, Arch, outfile, it, data)
[avg, fid] = archivemldata(Grd, Arch, outfile, it, data)

New version should be compatible with all versions of Matlab, as long as
snctools is installed and mexnc points to the proper backend (either
newer internal stuff or the proper mex version).
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Input variables:

Grd: 1 x 1 structure holding spatial and temporal grid data for
mixed_layer simulation

Arch: 1 x 1 structure holding data related to archiving

outfile: name of output file

it: index of current model time step

data: nvar x 4 cell array of data to be written to file. Column
1 holds the actual data values for the current model time
step, which must be either nz x 1 vectors, nzp x 1 vectors,
or scalars. Columns 2-4 are strings with the variables’
short names, long names, and units, respectively.

Output variables:

avg: nvar x 1 cell array, holding the newly-averaged values each
variable. Averages are performed over each archiving
period.

B.3.3 binary2netcdf

binary2netcdf(binfile, ncfile, sdate, edate, mdate, z, zp, vartable, ...
ntperread)

This function creates the netcdf output file for mixed_layer. It
requires Matlab R2009a or later, which has netcdf support.
binary2netcdf_snc can replace this function for older Matlab versions,
but that version is currently absurdly slow.

Input variables:

binfile: name of binary output file

ncfile: name of netcdf file

sdate: vector of datenumbers, time grid (beginning)

edate: vector of datenumbers, time grid (end)

mdate: vector of datenumbers, time grid (middle)

z: depth grid

zp: depth grid, edges

vartable: n x 3 cell array, all variables from simulation
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ntperfile: number of time steps to be written to each small
temporary file

verbose: flag indicating whether to print progress to screen

B.3.4 biomodule

[bioinit, ismixed, bottomval, Biovars, names] = ...
biomodule(’init’, In, Grd);

[newbio, diag] = ...
biomodule(’sourcesink’, oldbio, meanqi, temp, z, dz, Biovars, t, dt);

wsink = ...
biomodule(’vertmove’, oldbio, meanqi, temp, z, dz, Biovars, t, dt);

This is a template for a biological module for the mixed layer model.
The module is called in three different modes during the mixed_layer
simulation: ’init’, ’sourcesink’, and ’vertmove’.

The initialize (’init’) mode sets up several different variables
associated with the biology of the model, including:

- setting initial depth profiles of all biological state variables
- determining whether each state variable will be mixed via the

diffusive mixing scheme used in the model
- setting any deep water forcing of each state variable
- adding any additional variables that will be needed to run the

’sourcesink’ and/or ’vertmove’ modes of the module.
- setting the names of any dignostic variables that will be calculated

in the ’sourcesink’ mode.

The source and sink mode (’sourcesink’) calculates the change in biomass
of each state variable over a single time step of the model. This mode
receives as input the biomass of all biological state variables, the mean
solar radiation, and the temperature profile at the current time step, as
well as the time and depth grid variables. If you require additional
variables to calculate changes in biomass, these variables should be
included in the Biovars structure created during initialization.

The vertical movement (’vertmove’) mode calculates speed of vertical
movement for each state variable. This can be used to introduce sinking
or any other vertical movement unrelated to turbulent mixing.

Input variables for ’init’ mode:

In: 1 x 1 structure holding user-supplied info.

See each individual function in this folder for the
particular variables required by each module.

Grd: 1 x 1 structure, see mixed_layer code for fields

Output variables for ’init’ mode:
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bioinit: ndepth x nbsv array, initial depth profiles for all
biological state variables

ismixed: 1 x nbsv logical array, indicates whether each biological
state variable undergoes physical mixing.

bottomval: 1 x nbsv array, value used to force bottom layer during
mixing. NaN indicates no forcing.

Biovars: 1 x 1 structure holding additional parameters

names: 1 x nbsv cell array of strings, names for each state
variable, Names must begin with a letter and contain only
letters, numbers, and underscores.

diagnames: 1 x ndiag cell array of strings, names for each diagnostic
variable. Names must begin with a letter and contain only
letters, numbers, and underscores.

Input variables for ’sourcesink’ and ’vertmove’ mode:

oldbio: ndepth x nbsv array, profiles of biological state variables
at current time step

meanqi: mean incoming solar radiation (W m^-2)

temp: ndepth x 1 array, temperature profile (deg C)

z: ndepth x 1 array, depth grid for model (m)

dz: depth grid cell size (m)

t: current time (s)

dt: time step (s)

Output variables for ’sourcesink’ mode:

newbio: ndepth x nbsv array, profiles of biological state variables
after stepping forward by one time step

diag: ndepth x ndiag array, values of each diagnostic variable at
each depth

Output variables for ’vertmove’ mode:

wsink: ndepth x nbsv array, velocity of vertical movement, where
positive values indicate movement towards the surface (m/s)

115



B.3.5 calcclusteredparams

[New, ped, old2new] = calcclusteredparams(Full, pedigree, idx, pedtype)

Given an Ewe input structure and a list of clustering indices, this
function calculates the new parameter values by summing biomass in each
clustered group, and performing a biomass-weighted average on all other
parameters.

Input variables:

Full: Ewe input structure for original food web

pedigree: ng x 4 array pedigree values for B, P/B, Q/B, and DC

idx: ng x 1 array of indices, where each index represents the
cluster number into which this group will be added. Values
must be integers from 1 to nc, where nc is the number of
clusters,

pedtype: method to use when calculating new pedigree
’propagate’: uses propagation of error through the

summing/averaging calculations, assuming
that pedigree represents 95% confidence
interval (i.e. 2 std) in a normal
distribution

’average’: performs a simple biomass-weighted average
over clustered groups. This will result in
higher pedigree values than the propagation
method, which may be preferable since the
values are not based on measurements but
rather rough guesses.

Output variables:

New: new Ewe input structure for clustered model, with nc groups

ped: pedigree matrix for clustered model

old2new: ng x 1 array of indices showing which group each old one is
now part of (doesn’t match idx because groups are resorted
by trophic level)

B.3.6 calcheat

[Qi, Qs, Ql, Qlw, adv_fac] = calcheat(Qi, atmp, dpnt, Tsrf, wspeed10, ...
Qo, meanQi, alb)

All variables are vectors of the same size unless otherwise indicated.
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Input variables:

Qi: incident solar radiation (W m^-2)

atmp: air temperature (deg C)

dpnt: dewpoint temperature (deg C)

Tsrf: scalar, sea surface temperature (deg C)

wspeed10: wind speed 10 m above ocean surface (m/s)

Qo: clear-sky irradiance (W m^-2)

meanQi: mean observed daily irradiance (W m^-2)

alb: scalar, albedo, i.e. fraction of incoming radiation
reflected from the sea surface

Output variables:

Qi: incident solar radiation (W m^-2)

Qs: sensible heat flux (W m^-2)

Ql: latent heat flux (W m^-2)

Qlw: longwave heat flux (W m^-2)

adv_fac: advection factor, i.e. any net heating or cooling due to
advection. Currently hardcoded to 0.

B.3.7 cell2matfill

a = cell2matfill(c, empty)

Input variables:

c: cell array, where each cell holds either a numeric scalar or
empty array

empty: value used to replace empty arrays

Output variables:

a: numeric array, same size as c
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B.3.8 cellstr2

C = CELLSTR2(S) places each row of the character array S into
separate cells of C.

Use CHAR to convert back.

Another way to create a cell array of strings is by using the curly
braces:

C = {’hello’ ’yes’ ’no’ ’goodbye’};

This is a modified version of the cellstr function that does not
deblank the strings. -Kelly Kearney

See also STRINGS, CHAR, ISCELLSTR.

B.3.9 clearsky

Qo = clearsky(start_date,t,Lat)

This function calculates the clear-sky irradiance using the formula of
Seckel and Beaudry (1973) as reported in Reed (1977). This is used in
the calculation of net longwave heat flux.

Input variables:

start_date: 1 x 6 date vector of time corresponding to t = 0

t: vector of time values to calculate clear-sky irradiance
for, in seconds since start_date

Lat: scalar, latitude of location of interest

Output variables:

Qo: vector same length as t, clear-sky irradiance (W m^-2)

B.3.10 climatology

[timec, datac] = climatology(time, data)
[timec, datac] = climatology(time, data, dt)
[timec, datac] = climatology(time, data, ’noleap’)
[timec, datac] = climatology(time, data, ’expand’)
[timec, datac, lower, upper] = climatology(...)

This function creates a climatology by calculating the average yearly
cycle of data.
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Input variables:

time: time data, in any Matlab date format (datenumbers, date
vectors, or date strings)

data: nt x m array of data timeseries values.

dt: time interval tolerance for output climatology. Timeseries
values within this distance from each other are considered
the same (see uniquetol.m for details). Hoghly recommended
for noisy data.

’noleap’: if included, indicates that time data is in days since a
pivot year, with no leap year (i.e. all 365-day years).

’expand’: if included, the climatology is expanded to all input time
points, rather than just including the one-year cycle

Output variables:

timec: climatology time values, in either date numbers or days
since pivot year, no leap, depending on input format.

datac: climatology data

lower: lower quartile of climatology data

upper: upper quartile of climatology data

B.3.11 cptcmap

cptcmap(name);
cptcmap(name, ax);
cptcmap(... param, val, ...);
[cmap, lims, ticks, bfncol, ctable] = cptcmap(...)

This function creates and applies a colormap defined in a color palette
table (.cpt file). For a full description of the cpt file format, see
the Generic Mapping Tools documentation (http://gmt.soest.hawaii.edu/).
Color palette files provide more flexible colormapping than Matlab’s
default schemes, including both discrete and continuous gradients, as
well as easier direct color mapping.

Limitations: X11 color names not supported, patterns not supported, CMYK
not supported yet

Input variables:

name: .cpt file name. You may either specify either the full
path, or just the file name. In the latter case, the
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function will look for the file in the folder specified by
the cptpath variable in the first line of code; by default
this folder is located in the same location as cptcmap.m
and is called cptfiles.

ax: handle of axis or axes where colormap should be applied
(colormaps will effect the entire figure(s), but axis clim
adjustments for direct scaling will only affect the
specified axes). If no axis is specified and no output
variables are supplied, colormap will be applied to the
current axis. If no axis is specified and output variables
are supplied, the colormap will not be applied to any axes.

’showall’: When this option is used, a figure is created displaying
colorbars for all colormaps contained in the .cpt folder.
Color limits of each colormap are listed along with the
names of each. A small tick mark indicates the location of
0, where applicable. NOTE: the number of columns to use
for display is hard-coded. As you start collecting more
color palettes, the figure may get too cluttered and you
may have to adjust this (variable ncol is the plotcmaps
subfunction).

Optional input variables (passed as parameter/value pairs):

’mapping’: ’scaled’ or ’direct’. Scaled mapping spreads the colormap
to cover the color limits of the figure. Direct mapping
resets the color limits of the axes so that colors are
mapped to the levels specified by the .cpt file. [’scaled’]

’ncol’: number of colors in final colormap. If not included or NaN,
this function will try to choose the fewest number of
blocks needed to display the colormap as accurately as
possible. I have arbitrarily chosen that it will not try to
create more than 256 colors in the final colormap when
using this automatic scheme. However, you can manually set
ncol higher if necessary to resolve all sharp breaks and
gradients in the colormap.

’flip’: if true, reverse the colormap order [false]

Output variables:

cmap: ncol x 3 colormap array

lims: 1 x 2 array holding minimum and maximum values for which
the colormap is defined.

ticks: vector of tick values specifying where colors were defined
in the original file

bfncol: 3 x 3 colormap array specifying the colors defined for
background (values lower than lowest color limit),
foreground (values higher than highest color limit), and
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NaN values. These do not affect the resulting colormap,
but can be applied by the user to replicate the behavior
seen in GMT.

ctable: n x 8 color palette table, translated to Matlab color
space. Column 1 holds the lower limit of each color cell,
columns 2-4 the RGB values corresponding to the lower
limit, column 5 the upper limit of the color cell, and
columns 6-8 the RGB values of the upper limit. When the
lower and upper colors are the same, this defines a
solid-colored cell; when they are different, colors are
linearly interpolated between the endpoints.

Example:

[lat, lon, z] = satbath(10);
pcolor(lon, lat, z);
shading flat;
cptcmap(’GMT_globe’, ’mapping’, ’direct’);
colorbar;

B.3.12 createensemble2

[Lim, Set] = createensemble2(Ewein, pedigree, nset)
[Lim, Set, count] = createensemble2(Ewein, pedigree, nset)

Same as createensemble, but in this case it keeps generating ensembles
until it finds the designated number of balanced ones. Only balanced
parameters are returned, since otherwise arrays could be unmanageably
large. Could take a while...

Input variables:

Ewein: Ewe input structure, in any set of consistent units

pedigree: ngroup x 4 array of pedigree values (B, PB, QB, DC)

nset: number of balanced ensemble members to generate.

Output variables:

Lim: 1 x 1 structure with the following fields

bb: ng x 2 array, lower and upper limits for biomass
pb: ng x 2 array, lower and upper limits for

production/biomass
qb: ng x 2 array, lower and upper limits for

consumption/biomass
dc: ng x ng x 2, prey x pred x lower/upper limits for diet

fractions. Final dc values are renormalized to 1 after
being chosen from these intervals.
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Set: 1 x 1 structure with the following fields

bb: ng x nset, biomass values for each potential food web
pb: ng x nset, production/biomass values for each potential

food web
qb: ng x nset, consumption/biomass values for each

potential food web
dc: ng x ng x nset, diet composition for each potential

food web
ee: ng x nset, ecotrophic efficiency of resulting food web
q0: ng x ng x nset, flux due to consumption between all

groups

count: # of iterations required to acquire requested number of
balanced simulations

B.3.13 ecopathinputcheck

B = ecopathinputcheck(A)
B = ecopathinputcheck(A, warnoff)

This function checks an Ewe input structure for proper dimensions and to
verify certain values. If incorrect values are found (for example,
non-zero values for a primary producer’s consumption/biomass ratio), the
values are corrected.

Input variables:

A: Ewe input structure

warnoff: logical scalar. If true, no warnings are issued when
corrections are made to the structure. Default: false.

Output variables:

B: structure identical to A but with corrections made if
necessary.

B.3.14 ecopathinputinfo

fieldTable = ecopathinputinfo;

This function returns a table with information on the dimensions and
units used for each field in a Ewe input structure.

Output variables:
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fieldTable: n x 3 cell array of strings
column 1: names of each input variable
column 2: dimensions of variable (ngroup = number of

functional groups in the model, ndet = number
of non-live detritus groups, ngear = number of
fishing fleets in the model)

column 3: units of each variable (M = mass, A = area or
volume, T = time)

B.3.15 ecopathlite

ecopathlite(S)
C = ecopathlite(S)

This function reproduces the main calculations performed by the Ecopath
portion of the EwE model (www.ecopath.org). If no output variable is
provided, the results are printed to tables in the command window. (Note:
this part is out of date, must use output option for now).

Ecopath is used to parameterize the initial conditions of an ecosystem
model. This function is not really meant to be used to set up and
balance a model for the first time, since it does not provide any
feedback on the results (e.g. whether EE values are > 1, etc); use the
original Ecopath software for this.

Note that the units listed below are those used in the original Ecopath
software. They can be changed as long as all parameters are changed
consistently.

Input variable:

S: structure with the following fields. Values of the fields b, pb,
qb, ee, ge, gs, and/or dtImp that defined as NaN indicate
unknown values, which will be filled in by the ecopath algorithm.

ngroup: 1 x 1 array, number of functional groups in the
model

nlive: 1 x 1 array, number of live (non-detrital) groups
in the model

ngear: 1 x 1, number of fishing gear types in the model

areafrac: ngroup x 1 array, fraction of habitat area occupied
by each group (no units, 0-1)

b: ngroup x 1 array, biomass (t km^-2)

pb: ngroup x 1 array, production over biomass ratios
(yr^-1)
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qb: ngroup x 1 array, consumption over biomass ratios
(yr^-1)

ee: ngroup x 1 array, ecotrophic efficiencies (no
units, 0-1)

ge: ngroup x 1 array, gross efficiency, i.e. production
over consumption ratio (no units)

gs: ngroup x 1 array, fraction of consumed food that is
not assimilated (no units)

dtImp: ngroup x 1 array, detritus import (should be zero
for all non-detrital groups) (t km^-2 yr^-1)

bh: ngroup x 1 array, habitat biomass, i.e. biomass
per unit area (b/areafrac) (t km^-2)

pp: ngroup x 1 array, fraction of diet consisting of
primary production, pp = 2 indicates detritus

dc: ngroup x ngroup array, diet composition, dc(i,j)
tells fraction predator j’s diet consisting of prey
i

df: ngroup x (ngroup - nlive) array, fraction of each
group that goes to each detrital group due to other
mortality and egestion

immig: ngroup x 1 array, immigration into area (t km^-2
yr^-1)

emig: ngroup x 1 array, emigration out of area (t km^-2
yr^-1)

emigRate: ngroup x 1 array, emigration per unit biomass
(yr^-1)

ba: ngroup x 1 array, biomass accumulation (t km^-2
yr^-1)

baRate ngroup x 1 array, biomass accumulation per unit
biomass (yr^-1)

landing ngroup x ngear array, landings of each group by
each gear type (t km^-2 yr^-1 ?)

discard ngroup x ngear array, discards of each group by
each gear type (t km^-2 yr^-1 ?)

discardFate: ngear x (ngroup - nlive) array, fraction of
discards from each gear type that go to each
detritus group
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Output variables:

C: structure with the following fields, all ngroup x 1 arrays unless
otherwise specified

trophic: trophic level

areafrac: fraction of total area occupied by group

bh: habitat biomass (biomass/area)

b: total biomass

pb: production/biomass ratio

qb: consumption/biomass ratio

ee: ecotrophic efficiency

ge: growth efficiency, i.e. production/consumption

ba: biomass accumulation

baRate: biomass accumulation rate

migration: net migration

flowtodet: (ngroup + ngear) x 1 array, flow to detritus from
each group and each gear type

fishMortRate: mortality rate due to fishing

predMortRate: mortality rate due to predation

migrationRate: net migration rate

otherMortRate: mortality rate due to anything else

predMort: predation mortality

q0: ngroup x ngroup array, initial consumption rates by
each predator on each prey

q0sum: total consumption rate by each predator

respiration: respiration

searchRate: ngroup x ngroup array, search rates of each
predator for each prey

detexport: (ngroup-nlive) x 1 array, amount of detritus
exported from the system
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B.3.16 endonly

[anew, bnew, ...] = endonly(a,b);

Returns only last row of a n x m x p array (i.e. squeeze(a(end,:,:))).
I wrote this function simplify grabbing the last time step result from an
ODE solver. Result will be a m x p array.

Input variables:

a,b, ...: three-dimensional arrays. Arrays do not have to be the
same size as each other.

Output variables:

anew...: two-dimensional arrays holding first row of each input
array, respectively

B.3.17 esabgcsetup

A = esabgcsetup

This function returns the biogeochemical parameters for a mixed_layer run
with the @nemurokak or @wce modules. This includes biogeochemical
parameters (including iron-related ones, starting profiles for all
nutrients, and rerouting fluxes.

I think I’ve now made units consistant between both modules (mol/m^3).
However, just due to the way NEMURO was originally written, some of the
variables here are still in mol/l; those are properly converted in the
formatforxxx.m routines.

Output variables:

A: 1 x 1 structure with the following fields

Np: structure of NEMURO-related paramters (see
nemuroinputparser)

binit: nz x 11 array, initial profile data for 11 standard
nemuro variables (mol/l)

zinit: nz x 1 array, depths corresponding to initial profile
data in binit (m)

reroute: nr x 5 cell array, rerouting of fluxes

grmax: 1 x 11 array, maximum grazing rates for nemuro
variables (s^-1)
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thresh: 1 x 11 array, grazing threshhold values for nemuro
variables (mol m^-3)

TODO: finish this list

B.3.18 esafoodwebsetup

A = esafoodwebsetup(Phys, Bgc, nset)
A = esafoodwebsetup(Phys, Bgc, nset, ’norun’)

This is probably the most complicated step of the setup process. It
includes the entire process to go from the published Aydin 2003 ESA
Ecopath model to an ensemble of balanced models that can be used in the
@wce module. Steps include:

- Make some manual changes to the original food web, including removing
the bacteria group and adjusting ctenophore GE.

- Adjust NEMURO-derived parameters to match my own version (@nemurokak)
- Reduce the number of functional groups via hierarchical clustering

routine based on shared predator and prey groups
- Generate an ensemble based on the pedigree uncertainty of B, P/B, Q/B,

and DC and keep only the members that balance
- Calibrate the X and D parameters of NEMURO-derived groups to match the

Ivlev growth curves as closely as possible.

Although the most time-consuming setup step, this should only need to be
rerun if I make major changes to my biogeochemistry that will effect the
nemuro-only calibration steps. Otherwise, all experiments use the same
set of input food webs.

Input variables:

Phys: physical input (see esaphysicssetup) for a normal-year run

Bgc: biogeocehmical input (see esabgcsetup)

nset: numbers of potential food webs to create; likely only a
small fraction of these will be balanced

Optional input:

adjustmanually: flag to indicate whether to perform the manual
parameter adjustments [true]

adjustnemuro: flag to indicate when to perform the match-to-nemuro
adjustments [true]

runnemuro: flag to indicate whether to rerun a 3-year normal-year
nemuro run. If true, the run will be done using the
Phys and Bgc input. Otherwise, nemuro adjustments will
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be performed using the esafwCallibration.nc file found
in the calling directory, and this file must contain a
nemuro sumulation whose last year is 1902. [true]

cvtparams: cell array of conversion parameters used when adjusting
food web to match nemuro run (need to convert from
molN/m^3/s to g ww/m^3/yr [{’wwCfrac’, 0.02}]

Output variables:

A: structure with fields:

EweinFull: original food web with bacteria group removed,
in t ww/km^2/yr, includes ngf groups

EweinFullAdj: above food web with parameters adjusted to
match NEMURO, as well as a manual adjustment to
ctenephore growth efficiency, in t ww/km^2/yr.

EweinSimp: above food web simplified to include fewer
functional groups, in t ww/km^2/yr, includes
ngs groups

EweinEns: ensemble generated from EweinSimp and its
associated pedigree, in molN/m^2/s. Each food
web includes X, D, and theta parameters such
that the nemuro-derived functional responses
mimic Ivlev grazing.

full2sim: ngf x 1 array, indicating which simplified
group each of the original groups were added to

Lim: structure listing the uncertainty bounds used
for the ensemble generation (see
createensemble.m), in t ww/km^2/yr

Set: structure listing the parameters associated
with each ensemble member (see
createensemble.m), in t ww/km^2/yr

CalDetailsSimp: matchmk output structure resulting from
functional response calibration of EweinSimp
(see matchmk.m)

CalDetailsEns: matchmk output structure resulting from
functional response calibration of EweinEns
(see matchmk.m)

nemidx: 1 x 11 array indicating which of the simplified
groups correspond to NEMURO state variables,
where the indices correspond to the 11 original
state variables (see nemvarnames.m)

pedigreeFull: ngf x 4 array of pedigree values for B, P/B,
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Q/B, and DC variables for the original model

pedigreeSimp: ngf x 4 array of pedigree values for B, P/B,
Q/B, and DC variables for the simplified model

B.3.19 esaphysicssetup

A = esaphysicssetup(iloc, type)

The esaCoreGeccoData datasets have CORE- and GECCO-extracted forcings for
4 locations within the ESA region:

1: 50 N -165 W
2: 50 N -145 W (OSP)
3: 50 N -135 W
4: 55 N -145 W

This file extracts those forcings, for either the normal-year or
interannual datasets, and also makes a few modifications to the default
physical parameters.

Input variables:

iloc: 1-4, corresponding to desired location

type: ’nyf’ or ’iaf’, specifying normal-year or interannual datasets

Output variables:

A: 1 x 1 structure with mixed_layer input variables:
dz, zbot, syear, eyear, Lat, wind_input, heat_input, ts_input,
srelax, srelaxtime, velocity_dissipation

B.3.20 eweunitconvert

[new1, new2, ...] = eweunitconvert(oldunit, newunit, old1, old2, ..., ...
param, val, ...)

Input variables:

oldunit: string specifying the units used in the old variable, in
the format M/A/T
M (mass): ’tons wet weight’, ’t ww’, ’mmol N’,

’mmol n’, ’mol N’, ’t C’, ’g C’
A (area/volume): ’km^2’, ’m^2’, ’km^3’, ’m^3’
T (time): ’year’, ’yr’, ’sec’, ’s’

newunit: string specifying the units for the new variables, using
the same format as oldunit
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old#: variables to be converted. These can be either Ewe input
structures, NemEp structures (see nemuroecopathdata) or
numeric arrays. All numeric arrays are assumed to start
with the same unit type, specified by the ’varunit’
parameter

Optional input variables (passed as parameter/value pairs), defaults in
parentheses

wwCfrac: ratio of carbon over wet weight (0.05)

c2n: nitrogen/carbon ratio (16/106)

cmw: molecular weight of carbon (12.0107)

depth: depth of water column used for any area to volume
conversions, in km (NaN)

varunit: type of unit used by input variables. Can be either
’M/A/T’ (flux rate), ’M/A’ (concentration), or ’1/T’ (rate)
(’M/A/T’)

Output variables:

new#: converted versions of all old# input variables

B.3.21 fluxread

Flux = fluxread(file, Opt)
Flux = fluxread(file, Opt, ’matrix’)
Flux = fluxread(file, Opt, ’cell’)
Flux = fluxread(Data, ’[cell]matrix’)
Flux = fluxread(..., flux1, flux2, ...);

This function reads in the flux data associated with a wce or nemurokak
run of the mixed_layer model. To save time and space, all predation
fluxes are read only at the surface.

Input variables:

file: name of output netcdf file (with or without .nc extension)

Opt: 1 x 1 one structure holding options for reading and
averaging data:

tstart: date number corresponding to earliest value to
read in time dimension. If NaN, will read from
beginning. [NaN]

tend: date number corresponding to latest value to
read in time dimension. If NaN, data will be
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read to end of time dimension. [NaN]

tstride: sampling interval (stride) along time
dimension. [1]

monthavg: True indicates to average data over each month.
Sampling based on above paramters will be done
prior to averaging. [false]

Data: Data structure returned by readmixed. Can be used instead
of file and Opt if data is already in memory and you just
want to reshape the fluxes

’matrix’: if included, reshape flux data into ngroup x ngroup x ntime
x ndepth matrices, If not includes fluxes will be left in
same format as in netcdf file. This can greatly increase
the size of the data since the fluxes are sparsely
distributed between groups, so not recommended for large
files (use cell instead).

’cell’: if included, store flux data in ngroup x ngroup cell array,
where cells hold ntime x ndepth data, or empty cells if no
flux occurs between two groups

flux#: Types of fluxes to read in. Can be any of the wce flux
types: ’dec’,’ege’,’exc’,’gpp’,’gra’,’mor’,’pre’,’exx’,
’res’. If not included, all flux types are read.

B.3.22 formatfornemurokak

In = formatfornemuro(Phys, Bgc)
In = formatfornemuro(Phys, Bgc, fe)

Just a little bookkeeping script to try to wrangle all the input data for
mixed_layer nemuro simulations. Takes data from esaphysicssetup.m and
exabgcsetup (which are designed to be more human-manageable so that one
can make easy modifications to the default values) and reformats it as
required for mixed_layer with the nemurokak biological module.

Input variables:

Phys: structure, output of esaphysicssetup.m

Bgc: structure, output of esabgcsetup.m

fe: string indicating which iron flux data to use:
’constant’: apply the constant flux over the whole run
’climatology’: use the climatological cycle derived from the

constant value paired with dry/wet-deposition
scaling

’timeseries’: use the full timeseries derived from the
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constant value paired with dry/wet-deposition
scaling

Output variables:

In: structure holding all inputs required for mixed_layer with the
nemurokak module

B.3.23 formatforwce

In = formatforwce(Phys, Bgc, Fw)
In = formatforwce(Phys, Bgc, Fw, fe)

Input variables:

Phys: see esaphysicssetup

Bgc: see esabgcsetup

Fw: see esafoodwebsetup

fe: string indicating which iron flux data to use:
’constant’: apply the constant flux over the whole run
’climatology’: use the climatological cycle derived from the

constant value paired with dry/wet-deposition
scaling

’timeseries’: use the full timeseries derived from the
constant value paired with dry/wet-deposition
scaling

Output variables:

In: structure holding all inputs required for mixed_layer with the
wce module

B.3.24 initbiorelax

Fields added to Bio structure:

hasrelax: nbsv x 1 logical array, true if relaxation data provided

Relax: 1 x nbsv 1 x 1 structure of data for bio relaxation
interpolation. Fields empty for non-relaxed variables.
t: nt x 1 array, times corresponding to

columns of data (s from sim start time)
z: nz x 1 array, depths corresponding to the

rows of data (m, neg down)
data: nz x nt array, biological relaxation profiles
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(in units defined bio biological module)

B.3.25 initialize

This function initializes the values of most constant parameters used
throughout the mixed-layer model. It also preallocates and sets the
initial conditions for many variables that will be modified throughout
the model simulation.

Input variables:

In: structure holding user-supplied input variables

Output variables:

Grd: structure holding temporal and spatial grid parameters:

z: nz x 1 array, depth coordinate at the center of
each grid cell (m)

zp: (nz+1) x 1 array, depth coordinate at the edges of
each grid cell (m)

nz: number of vertical levels

tmax: simulation length (s)

nt: total number of internal time iterations

time: 1 x nt array, time elapsed from model start time to
the beginning of each time interval (s)

start_date: 1 x 6 array, date vector for simulation start date.
This will always be Jan 1 of the specified start
year.

end_date: 1 x 6 array, date vector for simulation end date.
This will always be Dec 31 of the specified end
year.

Ht: structure holding variables related to heat forcing

t: nth x 1 array, time corresponding to Ht.data (s
from simulation start)

data: nth x 3 array, heat forcing data. Column 1 =
incoming solar radiation (W m^-2), Column 2 = air
temperature (deg C), Column 3 = dewpoint
temperature (deg C)
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Qo: nt x 1 array, estimate of clear sky irrandiance,
based on the "Smithsonian Formula" from Seckel and
Beaudry, as reported in Reed, 1977, JPO, 7, pp.
482-485. It is good for latitudes between 20S and
60N.

meanQi: nt x 1 array, mean observed daily irradiance (W
m^-2)

Ts: structure holding variables related to temperature and salinity

T: nz x 1 array, temperature profile (deg C)

S: nz x 1 array, salinity profile (psu)

Sig: nz x 1 array, density profile. Note that water is
currently treated as incompressible (kg m^-3)

Srelax: 1 x 1 structure of data for salt relaxation
interpolation. Not included if no salt relaxation
data was provided.
t: nts x 1 array, times corresponding to

columns of data (s from sim start time)
z: nzs x 1 array, depths corresponding to the

rows of data (m, neg down)
data: nzs x nts array, salt relaxation profiles

(psu)

Trelax: 1 x 1 structure of data for temperature relaxation
interpolation. Not included if no temperature
relaxation data was provided.
t: ntt x 1 array, times corresponding to

columns of data (s from sim start time)
z: nzt x 1 array, depths corresponding to the

rows of data (m, neg down)
data: nzt x ntt array, temperature relaxation

profiles (deg C)

Mmntm: structure holding variables related to momentum, mixing, and
turbulence

Kh: (nz+1) x 1 array, tracer mixing coefficient (m^2
s^-1)

small: arbitrarily small value, used as proxy for 0 to
prevent things from blowing up

U: nz x 1 array, east-west current velocity (m/s)

V: nz x 1 array, north-south current velocity (m/s)

q2: (nz+1) x 1 array, twice the turbulent kinetic
energy (m^2 s^-2)
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q2l: (nz+1) x 1 array, turbulent kinetic energy * length
scale term (m^3 s^-2)

len: (nz+1) x 1 array, turbulence length scale (m)

gh: (nz+1) x 1 array, Richardson number (no units)

sh: (nz+1) x 1 array, MY 2.5 intermediate quantity, a
function of the Richardson number

sm: (nz+1) x 1 array, MY 2.5 intermediate quantity, a
function of the Richardson number

Km: (nz+1) x 1 array, vertical kinematic viscosity,
i.e. momentum mixing coefficient (m^2 s^-1)

Kq: (nz+1) x 1 array, turbulence mixing coefficient
(m^2 s^-1)

boygr: (nz+1) x 1 array, buoyancy generation term

shear: (nz+1) x 1 array, shear term

lc_q2: (nz+1) x 1 array, dissipation constant for
turbulent kinetic energy (no units)

lc_q2l: (nz+1) x 1 array, dissipation constant for
kinetic-energy-length-scale (no units)

kmol: Background diffusivity (m^2 s^-1)

cor: coriolis forcing based on latitude (s^-1)

pgx: acceleration due to a pressure gradient in the EW
direction (m s^-2)

pgy: accelaration due to a pressure gradient in the NS
direction (m s^-2)

kappa: parameter related to bottom friction, von Karman’s
constant (no units)

z0b: roughness parameter, related to bottom friction (m)

Cbot: bottom friction coefficient (POM parameterization)
(no units)

Wnd: structure holding variables related to wind forcing

t: ntw x 1 array, times corresponding to wind data (s
from sim start time)

data: ntw x 3 array of wind forcing data. Column 1 =
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surface wind stress in east-west (u) direction (N
m^-2), column 2 = surface wind stress in the
north-south (v) direction (N m^-2), column 3 = wind
speed at 10 m above sea level (m/s)

Arch: structure holding variables related to archive (i.e. output).
The archiving period refers to the In.tarch input.

startdate: nbin x 6 array, date vectors corresponding to
start of each archiving time step

enddate: nbin x 6 array, date vectors corresponding to
end of each archiving time step

middate: nbin x 6 array, date vectors corresponding to
middle of each archiving time step

fraction: 1 x nt array, fraction that each model time step
contributes to its archiving time step

islast: 1 x nt logical array, true if time step
corresponds to the end of an archiving time step

bin: 1 x nt array, index of archiving time step to which
each model time step corresponds

nbin: number of archiving time steps

fileidx: nt x 2 array, column one holds the index of the
temporary output file to which results will be
written for each time step, column 2 tells the
index of that time step within the file

isnewfile: nt x 1 array, true if model time step is the first
to be written to a new temporary output file

endtime: n x 1, end time of each archiving period (s)

filedates: nfile x 2 array, indices of first and last archive
step included in each temporary output file

Charlie Stock
cstock@alum.mit.edu

modified by Kelly Kearney

B.3.26 initinterpdata

[A, str] = initinterpdata(type, data, Grd)
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This function sets up forcing datasets for use for later interpolation.
It verifies that data is in the proper format (vs depth, time, or both),
repeats climatological data if necessary, and extends data to the edges
of the model temporal and spatial grids if necessary (using
nearest-neighbor extrapolation).

Input variables:

type: One of the following strings:
’time’: data describes one or more variables vs time
’depth’: data describes one or more variables vs depth
’both’: data describes a single variable vs both time and

depth

data: Input data
’time’: nt x (6+nvar) array. Columns 1-6 hold date vectors

corresponding to each row of data, remaining
column(s) hold variable data. If the simulation
time spans multiple years and the data only spans a
single year, the data will be treated as a
climatology and repeated for all simulation years

’depth’: nz x (1+nvar) array. Column 1 holds depth values
corresponding to each row of data (m, negative
down), remaining column(s) hold variable data

’both’: (nt+1) x (nz+6) array. Columns 1-6 hold date
vectors corresponding to each row of data, row 1
holds depth values corresponding to each column of
data (cells (1,1:6) are ignored), remaining cells
hold variable data. If the simulation time spans
multiple years and the data only spans a single
year, the data will be treated as a climatology and
repeated for all simulation years.

Grd: Struct holding spatial and temporal grid data for mixed_layer
simulation

Output variables:

A: 1 x 1 structure with the following fields:

t: nt x 1 vector, time (seconds from simulation start
time) (’time’ or ’both’ only)

z: nz x 1, depth (m, negative down) (’depth or ’both’
only)

data: nt x nvar (’time’), nz x nvar (’depth’), or nz x nt
(’both’) array of variable values

str: string, describing time and/or depth interval where
extrapolation was necessary
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B.3.27 integratebio

[newbio, dbdt, Split, Diag, bad] = integratebio(fun, t, dt, oldbio, ...
Param, solver1, solver2, ...)

This function is a wrapper for different ODE solvers, used to integrate
biological variables in a few mixed_layer modules. It allows one to try
multiple different solvers, which can sometimes be useful when values get
low or start changing quickly (such that they are difficult to solve with
the set time step).

Input variables:

fun: function handle of ODEs for biology. Must be of the form
[db,Splitdb,Diag] = fun(t,b,P).

t: current time of integration

dt: time step

oldbio: nz x nbsv array of biological state variables

Param: structure of additional parameters for ODEs

solver: ODE solvers to use, in order. If any tracers go negative,
become NaNs, or become infinite, the next solver will be tried,
until the last solver is reached. Can be ’euler’, ’ode4’, or
’ode45’, or ’implicit’. *NOTE* Implicit doesn’t really work,
doesn’t conserve mass

Output variables:

newbio: biological state variable values at time t+dt

dbdt: dB/dt for each state variable.

Split: structure with contribution toward dB/dt from each flux type in
the ODE function. For euler and ode4, these will add to dbdt;
for ode45 they represent the splits when the ODE function is
evaluated at time t (since getting weights throughout the
variable steps is not presently possible)

Diag: additional diagnostic variables returned by the ODE function.
For euler and ode4, the diagnostics are those associated with
the beginning of the time step. Extra diagnostics cannot be
returned from the ode45 solver at this time.

bad: nz x nbsv logical array, true if the final solver attempted
still failed to integrate without hitting a negative, NaN, or
Inf value.
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B.3.28 ivlev2forage

A = ivlev2forage(m, d, tau, bi, bj, qij, dz, tfac)

This function attempts to choose the best parameters in order to make a
foraging arena functional response match a threshholded Ivlev functional
repsonse.

Ivlev: I = m * (1 - exp(-d * (N - tau)))
Type 2: I = m * (N / (k + N))
Type 3: I = m * (N^2 / (k^2 + N^2))
Foraging arena: I = Q/Bj .* (D .* (N/Bi)^theta)/(D - 1 + (N/Bi)^theta)

Currently, the "best match" is defined as the value of D that gets
closest to the same half-saturation constant (k = ln2/(d) + tau) and
maximum grazing rate (m) as in the Ivlev version.

In previous versions of this function, I tried to do a full
sum-of-squares curve fit over an arbitrary domain, but found that just
fitting to k and m was much more time-efficient and provided results of a
similar quality.

Input variables:

m: maximum ingestion rate of target Ivlev function (at 0deg C)
(s^-1)

d: Ivlev parameter for target Ivlev function (molN/m^3)^-1

tau: prey threshhold value for target Ivlev function (molN/m^3)

bi: mass-balanced prey biomass (molN/m^2)

bj: mass-balanced predator biomass (molN/m^2)

qij: mass-balanced consumption (molN/m^2/s)

dz: depth over which to assume consumption occurs (m)

tfac: average temperature factor (i.e. exp(kT)) experienced over the
time and space from which bi, bj, and qij were derived

Output variables:

Dfit: value of D for which fraction error of foraging-arena
equivalent m and k is smallest compared to the Holling Type 3
response whose half-sat is equal to ln(2)/d + tau and whose
maximum ingestion rate equals that of the Ivlev form

mfit: maximum ingestion rate achieved with Dfit (/s)

kfit: half-saturation value achieved with Dfit (theta = 2) (molN/m^3)
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bi: mass-balanced prey biomass, in volumetric units (molN/m^3)

bj: mass-balanced predator biomass, in volumetric units (molN/m^3)

qij: mass-balanced consumption rate of prey by predator at 0deg C
(molN/m^3/s)

k: half-saturation constant of Holling Type 3 function closest to
target Ivlev (ln(2)/d + tau) (molN/m^3)

fun: cell array of function handles to calculate Ivlev, Holling Type
2, Holling Type 3, and foraging arena functional responses,
respectively.

B.3.29 listfluxes

list = listfluxes(’nemurokak’, Idx)
list = listfluxes(’wce’, Idx, links)

Input variables:

Idx: 1 x 1 structure with fields (ps, pl, zs, zl, etc) indicating
the index of the biological state variables corresponding to
each nemuro-derived variable (see wce and nemurokak setup)

links: ng x ng array indicating type of predator/prey interaction
1 = zooplankton eat zooplankton
2 = nekton eat zooplankton
3 = nekton eat nekton
4 = zooplankton eat phytoplankton
Note: For mortality flux indices, this function assumes that
all living critters are involved in at least one predator-prey
interaction. If not true, I’ll need to update this.

Output variables:

list: n x 3 cell array, where column 1 indicates the type of flux,
column 2 source group index, and column 3 the sink group index

B.3.30 minmax

[minval maxval] = minmax(a)
lims = minmax(a);
lims = minmax(a, type);
lims = minmax(a, type, w);

Computes the minimum and maximum value in entire array (all dimensions).
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Input variables:

a: numeric array

type: ’all’: absolute minimum and maximum (default)
’noout’: discards outliers
’center’: centers on zero
’centernoout’: centers on 0 and eliminates outliers

w: for no-outlier version, factor defining an outlier. Point is
considered an outlier if larger than q3+w*(q3-q1) or smaller
than q1-w*(q3-q1) [1.5]

Output variables:

minval: minimum value in a

maxval: maximum value in a

B.3.31 mixed_layer

mixed_layer(outputfile)
mixed_layer(outputfile, param1, val1, param2, val2, ...)
Input = mixed_layer(...)
Stop = mixed_layer(..., ’stopafterinit’, true)

This program simulates the seasonal evolution of a 1D water column. It
is forced by observed solar radiation and wind forcing. Numerically, a 1D
diffusion equation is solved implicitly, allowing for long time steps
without loss of stability.

The supporting functions for this model reside in the private directory.
In addition, the model relies on a few 3rd-party toolboxes:

Rich Signell’s RPSstuff toolbox (wstress.m)
http://woodshole.er.usgs.gov/operations/sea-mat/RPSstuff-html/index.html

Phil Morgan’s seawater toolbox (sw_dens0.m and sw_smow.m)
http://www.marine.csiro.au/datacentre/processing.htm.

mexnc and snctools (pre-Matlab R2009a only)
http://mexcdf.sourceforge.net/

The mixed_layer model is set up to allow interchangeable biological
modules to be run within it. Please see biomodule.m (in the biomodules
directory) for a template function and more information.

The output filename input is required for the model to run. All other
inputs are optional and passed as parameter/value pairs. One or more of
these paramters can also be passed in structure format, where the
fieldnames correspond to one or more of the parameter names. The default
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values for these parameters set up the model for a specific example
scenario. Some variables (such as albedo and the attenuation
coefficients) can be relied on for other models, while others (such as
years, depths, or various input data sets) would make little sense when
combined with other data. Unless indicated, all variables hold numerical
arrays. Variables are scalars unless dimensions are specified. Default
values are in brackets.

Input variables:

REQUIRED:
---------

outputfile: string, name of netcdf output file, where all model results
will be saved. If no extension is provided, .nc will be
appended.

MODEL GRID:
-----------

dz: the thickness of each grid cell (m). Can be a vector of
thicknesses, prescribing the thickness of each individual
layer, although math is not as certain for this. [5]

zbot: the depth of the modeled water column (m, negative) [-150]

dt: the model time step (seconds) [10800]

syear: starting year for simulation (will start on Jan 1 of this
year), or 1 x 6 date vector of starting date [1976]

eyear: ending year for simulation (will end on Dec 31 of this
year), or 1 x 6 date vector of ending date [1976]

PHYSICAL PARAMETERS:
--------------------

krad1: the attenuation coefficient (m^-1, value should be
positive) for visible radiation (~between 350 nm and 700 nm
wavelength). This is approximately equivalent to the
photosynthetically available radiation (PAR). [0.15]

prad1: the fraction of incoming solar radiation that falls into
visible wavelengths ~ PAR. By default, it is assumed that
roughly 45% of the incoming solar radiation falls into this
category (Baker and Frouin, 1987, L&O, 32:6, pp.
1370-1377). [0.45]

krad2: the attenuation coefficient (m^-1, value should be
positive) for non-visible (mainly infra-red) solar
radiation. Water absorbs this radiation very quickly.
[1.67]

alb: the albedo, or the fraction of incoming radiation reflected
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from the sea surface. The default value is 0.079, which is
typical for 43 N latitude. (Payne, R.E., 1972, Journal of
Atmospheric Sciences, 29:5, pp. 959-969). *If your heat
forcing was measured below the water surface, set the
albedo to 0. [0.079]

Lat: latitude where simulation takes place (used for Coriolis
force calculations) [45]

whgt: elevation above sea level where wind forcing data was
measured (m). [10]

pgx: acceleration due to a pressure gradient in the east-west
direction (m s^-2) [1e-5]

pgy: acceleration due to a pressure gradient in the north-south
direction (m s^-2) [0]

kmol: molecular diffusivity (m^2/s) [1e-4]

velocity_
dissipation:dissipation constant (s^-1). This term removes energy from

past storm events over a specified time-scale as though
energy was being transferred to more quiescent surrounding
waters. [3.858e-6, i.e. 1/(3 day)]

EXTERNAL FORCING:
-----------------

wind_input: Wind forcing data. This is an n x 8 matrix, with columns
representing year, month, day, hour, minute, second,
east-west wind speed (i.e. u), north-south wind speed (i.e.
v). Speeds in m/s. By default, a dateset representing 1976
observations on the Scotia Shelf is used.

heat_input: Heat forcing data. This is an n x 9 matrix, with columns
representing year, month, day, hour, minute, second,
incident solar radiation (Qi), air temperature, and dew
point temperature. Radiation is in W/m^2 and all
temperatures are in deg C. By default, a dateset
representing 1976 observations on the Scotia Shelf is
used.

ts_input: Initial temperature and salinity profiles for simulation.
Data is an n x 3 matrix with columns representing depth (m,
negative down), temperature (deg C), and salinity (psu).
By default, a dateset representing 1976 observations on the
Scotia Shelf are used.

srelax: Relaxtion data for salinity. Columns 1-6 of this array
hold a year, month, day, hour, minute, and second
corresponding to the dates of the relaxation forcing, and
row 1 of the array hold depths (negative down, m). Columns
1-6 in row 1 are just placeholders and will be ignored.
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The remaining cells hold salinity data (ppt) for the given
times and depths towards which the modeled salinity will be
relaxed. If all the relaxation data is from the same year,
the data will be treated as climatological data and will be
repeated for every simulated year. If empty, no relaxation
will be done. [empty]

srelaxtime: Timescale for salinity relaxation (s) [2592000, i.e. 30 d]

trelax: Relaxation data for temperature. Format is the same as for
srelax, with temperature data in deg C. If all the
relaxation data is from the same year, the data will be
treated as climatological data and will be repeated for
every simulated year. If empty, no relaxation will be
done. [empty]

trelaxtime: Timescale for temperature relaxation (s) [2592000]

tracerw: Vertical velocity data. Format can be either a single
scalar value, indicating constant vertical advection over
space and time, or the same as for srelax, with velocity
data in m/s. This data can be used to simulate upwelling
(positive) or downwelling (negative) velocities. The
movement associated with this is applied to temperature,
salinity, and all mixed biological state variables. NOTE:
This hasn’t really been tested, and probably shouldn’t be
used unless I put some more work into it.

ARCHIVING:
----------

tarch: the archiving interval (seconds). Data is averaged over
tarch seconds. Can also be one of these indicators, which
represent non-even archiving intervals:
-1: monthly
If tarch isn’t scalar, then multiple output files will be
created; beginarchive and endarchive must be the same size
as tarch. [86400]

beginarchive: datenumber indicating what model date to begin recording
to an output file, or NaN to indicate that archiving begins
immediately. [NaN]

endarchive: datenumber indicating what model date to stop recording
output to an output fle, or NaN to indicate archiving until
the simulation ends. [NaN]

outputextension: cell array of strings, same size as tarch,
beginarchive, and endarchive. This string is appended to
the outputfile string if multiple files are indicated by
the other archiving variables.

tempfilesz: number of data points (i.e. time steps) to read in at a
time when converting from the temporary binary output file
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to a netcdf file. If NaN, all data is read at once. Using
smaller amounts may speed up the read/write process, and
can avoid memory errors, especially if a simulation returns
a large number of biology-associated variables. For
variable-heavy runs, reading a few hundred time steps at a
time is probably a good idea. [NaN]

stopafterinit: logical scalar. If true, simulation is terminated after
the initialization process, and no forward integration is
performed. This is for debugging purposes. Using this
option also leads to different output if mixed_layer is
called with an output variable (see below) [false]

tempdir: string, folder where temporary file will be stored. If
empty, the default temporary directory will be used. []

cleanup: logical scalar. If true, temporary files will be deleted
after the netcdf file is created. Files will always be
kept if the simulation crashes. [true]

BIOLOGY:
--------

biofun: Function handle to biological module. If empty, the model
will run without any biology. [empty]

*var*relax: Relaxation data for any biological state variable, where
*var* corresponds to the short name of the variable.
Format is the same as for srelax. If not included or
empty, no relaxation will be done.

*var*flux: Additional flux into (or out of) any biological state
variable, where *var* corresponds to the short name of the
variable. Format is the same as for srelax, in units of
stateVariableUnit/s.

brelaxtime: Timescale for relaxation of biological state variables. (s)
[2592000]

openbottom: Logical scalar. The value changes the way the biological
tracer variables interact in the bottom cell. If false, a
no-flux condition is set at the bottom; mixing and vertical
movement will be conservative for biological tracers. If
true, the values of biological variables are held constant
in the bottom cell, and material sinks through the
bottom boundary; mass is not conserved under these
conditions. [false]

OTHER
-----

verbose: logical scalar. If true, progress statements will be
printed to the screen. If false, nothing will be printed.
[true]
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Output variables:

Input: 1 x 1 structure holding the input variables used for the
run. Returning this variable allows you to see all inputs
used, including those set by defaults.

Stop: 1 x 1 structure holding the variables used within a
mixed_layer run. This is returned only if the
’stopafterinit’ flag is set to true, and is useful for
debugging purposes.

B.3.32 mixtracer

newtracer = mixtracer(tracer, mixcoef, dt, dz, sbc, bbc, bottomval,
source, dissipate)

This function calculates an implicit solution to integrate the diffusion
equation over one time step. The diffusion equation in this case is
du/dt = d/dz(K * du/dz) - cu, where u is any tracer, K is the mixing
coefficient for that tracer, and c is a constant dissipation term.

Input variables:

tracer: n x 1 array of tracer concentrations at each depth at the
current time step (units vary based on tracer)

mixcoef: n x 1 array, mixing coefficient for tracer at each depth
(m^2 s^-1)

dt: time increment (s)

dz: depth increment (m)

Optional input variables (passed as parameter/value pairs):

sflux: flux of tracer across the surface interface, i.e. K * du/dz
at the surface, where u is tracer concentration and K is
the mixing coefficient (tracer unit s^-1)

bflux: flux of tracer across the bottom interface, i.e. K * du/dz
along the bottom, where u is tracer concentration and K is
the mixing coefficient (tracer unit s^-1)

sval: tracer value at the surface, used to force the surface grid
cell.

bval: tracer value along the bottom, used to force the bottom
grid cell

source: n x 1 array, source (or sink) flux of tracer at each depth
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(tracer unit s^-1)

dissipate: dissipation constant (s^-1)

Output variables:

newtracer: n x 1 array, tracer concentrations at next time step
(tracer unit)

B.3.33 mixturb_my

B.3.34 mycoef

[b1, sh, sm, Kq, Km, Kh] = mycoef(nz, sh, gh, sm, len, q2)

This routine calculates the mixing coefficients for turbulence, scalars
and momentum. A typical value for molecular diffusion (kmol) is added to
the calculated values to serve as a lowe limit for diffusion.

B.3.35 nanmean

M = NANMEAN(X) returns the sample mean of X, treating NaNs as missing
values. For vector input, M is the mean value of the non-NaN elements
in X. For matrix input, M is a row vector containing the mean value of
non-NaN elements in each column. For N-D arrays, NANMEAN operates
along the first non-singleton dimension.

NANMEAN(X,DIM) takes the mean along the dimension DIM of X.

See also MEAN, NANMEDIAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM.

B.3.36 ncvarsget

Data = ncvarsget(file, var1, var2, ...)

This function reads multiple variables from a netcdf file. It is just a
wrapper function for nc_varget.

Input variables:

file: name of netcdf file
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var: name of variable to read in, which must correspond exactly to a
variable in the file. If no variable names are listed, all
variables are read.

Output variables:

Data: 1 x 1 structure, with fieldnames corresponding to requested
variables, each holding the data value for that variable

B.3.37 nemuroecopathdata

Data = nemuroecopathdata(file, Opt, depth)

This function calculates Ecopath-related variables based on the output of
a NEMURO simulation, using the depth-integrated values.

Input variables:

file: output file for mixed_layer with nemuro biology (units
mol/m^3/s)

Opt: structure of options for reading in file (see readmixed)

depth: depth to integrate over. If not included, will integrate over
the entire water column

Output variables:

Data: 1 x 1 structure with the following fields

b: mol N m^-2

qb: s^-1

q0: mol N m^-2 s^-1

q0sum: mol N m^-2 s^-1

pb: s^-1

ge: no unit

gs: no unit

dc: no unit

m0: mol N m^-2 s^-1

m2: mol N m^-2 s^-1
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B.3.38 nemuroflexinput

Params = nemuroflexinput(’param1’, val1, ’param2’, val2, ...)
Params = nemuroflexinput(setname)
Params = nemuroflexinput(setname, ’param1’, val1, ’param2’, val2, ...)

This function collects all the input variables from a nemuro paramter
structure into critter x 1 (for group-related) or critter x critter (for
flux-related) arrays. Originally this was in preparation for the
flexible-nemuro biological module, hence the name, but it’s now used as a
convenient organization step for several biological modules.

Input variables:

setname: string corresponding to one of the set names in
nemuroParamSets.mat. These indicate various sets of NEMURO
parameters that have been published in the literature. Any
unspecified variables (see below) will be set to a default
value from the specified set. If no set is specified, the
’NEMURO Version 1.f90’ set, from the original source code
representing the A7 location, will be used.

Optional input variables:

All variables should be scalars. Values can be entered as
parameter/value pairs or as fields in a structure. Default values
come from parameter set indicated by setname. See
nemuroinputparser.m for full list of variables for native variables.
For non-native variables (i.e. live groups other than those included
in the original NEMURO), variables should follow the format:

var_#: where # is the index of the critter

for producers: alpha, Iopt, Vmax, Kno3, Knh4, Kgpp, pusai,
res0, Kres, gamma, needsi, Ksi

for grazers: lambda, Kgra, alphaeg, beta

for both: mor0, Kmor, settle

var_#1_#2: where #1 is the index of the prey and #2 is the index of
the predator

for grazers: grmax, thresh, grpusai

Output variables:

Params: 1 x 1 structure with the following fields:

alpha1: Light Dissipation coefficient of sea water
(/m)
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alpha2: phytoplankton self-shading coefficient
(l/molN/m)

usesteele: logical scalar indicating whether to use
Steele (1) or Platt (0)
photosynthesis-irradiance curves

RSiN: Si/N ratio (molSi/molN)

alpha: nbsvx1 array, initial slope of
photosynthesis-irradiance curve (Platt
only) (/(ly/min)/s)

Iopt: nbsvx1 array, optimal light intensity
(Steele only) (ly/min)

Vmax: nbsvx1 array, maximum photosynthetic rate
@0degC (/s)

Kno3: nbsvx1 array, half-saturation constant for
uptake of NO3 (molN/l)

Knh4: nbsvx1 array, hal-saturation constant for
uptake of NH4 (molN/l)

Kgpp: nbsvx1 array, temperature coefficient for
photosynthetic rate (/degC)

pusai: nbsvx1 array, ammonium inhibition
coefficent (l/molN)

res0: nbsvx1 array, respiration rate @0degC (/s)

Kres: nbsvx1 array, temperature coefficient for
respiration (/degC)

mor0: nbsvx1 array, mortality rate @0degC
(l/(molN s))

Kmor: nbsvx1 array, temperature coefficient for
mortality (/degC)

gamma: nbsvx1 array, ratio of extracellular
excretion to photosynthesis (no units)

lambda: nbsvx1 array, Ivlev constant (l/molN)

Kgra: nbsvx1 array, temperature coefficient for
grazing (/degC)

Ksi: nbsvx1 array, half-saturation coefficient
for silica (molSi/l)

alphaeg: nbsvx1 array, assimilation effieciency (no
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units)

beta: nbsvx1 array, growth efficiency (no units)

needsi: nbsvx1 logical array, true if requires
silica for growth

grmax: nbsvxnbsv array, maximum rate of grazing by
predator j on prey i @0degC (/s)

thresh: nbsvxnbsv array, threshold value for
grazing (molN/l)

grpusai: nbsvxnbsv array, preference coefficient for
prey i by predator j (l/molN)

vdec: nbsvxnbsv array, decomposition (or
nitrification) rate of i into j @0degC (/s)

Kdec: nbsvxnbsv array, temperature coefficient
for decomposition (/degC)

inhibitedby: nbsvxnbsv cell array, indices of prey
groups preferred over prey i by predator j

settle: nbsvx1 array, settling velocity (m/s)

egenosink: nbsvx1 array, fraction of food egested by
each grazer that does not sink (i.e. goes
to DON instead of PON).

B.3.39 nemuroinputparser

Params = nemuroinputparser(’param1’, val1, ’param2’, val2, ...)
Params = nemuroinputparser(setname)
Params = nemuroinputparser(setname, ’param1’, val1, ’param2’, val2, ...)
[Params, Extra] = nemuroinputparser(...)

Input variables:

setname: string corresponding to one of the set names in
nemuroParamSets.mat. These indicate various sets of NEMURO
parameters that have been published in the literature. Any
unspecified variables (see below) will be set to a default
value from the specified set. If no set is specified, the
’NEMURO Version 1.f90’ set, from the original source code
representing the A7 location, will be used.

’Eslinger et al. Simulation Parameter’
’Eslinger et al. Station P’
’Eslinger et al. A7’
’Eslinger et al. Bering’
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’NEMURO Version 1.f90’
’Fujii et al. Papa’
’Fujii et al. A7’
’Fujii et al. KNOT’
’Kishi et al. A7’

Optional input variables:

All variables should be scalars. Values can be entered as
parameter/value pairs or as fields in a structure. Default values
come from parameter set indicated by setname.

alpha1: Light Dissipation coefficient of sea water [/m]
alpha2: PS+PL Selfshading coefficientS+PL [l/molN/m]
IoptS: PS Optimum Light Intensity S [ly/min]
IoptL: PL Optimum Light Intensity [ly/min]
LLN: Number of sublayer for calculating of Lfc
VmaxS: PS Maximum Photosynthetic rate @0degC [/s]
KNO3S: PS Half satuation constant for Nitrate [molN/l]
KNH4S: PS Half satuation constant for Ammonium [molN/l]
PusaiS: PS Ammonium Inhibition Coefficient [l/molN]
KGppS: PS Temp. Coeff. for Photosynthetic Rate [/degC]
MorPS0: PS Mortality Rate @0degC [/s]
KMorPS: PS Temp. Coeff. for Mortality [/degC]
ResPS0: PS Respiration Rate at @0degC [/s]
KResPS: PS Temp. Coeff. for Respiration [/degC]
GammaS: PS Ratio of Extracell. Excret. to Photo. [(nodim)]
VmaxL: PL Maximum Photosynthetic rate @0degC [/s]
KNO3L: PL Half satuation constant for Nitrate [molN/l]
KNH4L: PL Half satuation constant for Ammonium [molN/l]
KSiL: PL Half satuation constant for Silicate [molSi/l]
PusaiL: PL Ammonium Inhibition Coefficient [l/molN]
KGppL: PL Temp. Coeff. for Photosynthetic Rate [/degC]
MorPL0: PL Mortality Rate @0degC [/s]
KMorPL: PL Temp. Coeff. for Mortality [/degC]
ResPL0: PL Respiration Rate at @0degC [/s]
KResPL: PL Temp. Coeff. for Respiration [/degC]
GammaL: PL Ratio of Extracell. Excret. to Photo. [(nodim)]
GRmaxS: ZS Maximum Rate of Grazing PS @0degC [/s]
KGraS: ZS Temp. Coeff. for Grazing [/degC]
LamS: ZS Ivlev constant [l/molN]
PS2ZSstar: ZS Threshold Value for Grazing PS [molN/l]
AlphaZS: ZS Assimilation Efficiency [(nodim)]
BetaZS: ZS Growth Efficiency [(nodim)]
MorZS0: ZS Mortality Rate @0degC [/s]
KMorZS: ZS Temp. Coeff. for Mortality [/degC]
GRmaxLps: ZL Maximum Rate of Grazing PS @0degC [/s]
GRmaxLpl: ZL Maximum Rate of Grazing PL @0degC [/s]
GRmaxLzs: ZL Maximum Rate of Grazing ZS @0degC [/s]
KGraL: ZL Temp. Coeff. for Grazing [/degC]
LamL: ZL Ivlev constant [l/molN]
PS2ZLstar: ZL Threshold Value for Grazing PS [molN/l]
PL2ZLstar: ZL Threshold Value for Grazing PL [molN/l]
ZS2ZLstar: ZL Threshold Value for Grazing ZS [molN/l]
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AlphaZL: ZL Assimilation Efficiency [(nodim)]
BetaZL: ZL Growth Efficiency [(nodim)]
MorZL0: ZL Mortality Rate @0degC [/s]
KMorZL: ZL Temp. Coeff. for Mortality [/degC]
GRmaxPpl: ZP Maximum rate of grazing PL @0degC [/s]
GRmaxPzs: ZP Maximum rate of grazing ZS @0degC [/s]
GRmaxPzl: ZP Maximum rate of grazing ZL @0degC [/s]
KGraP: ZP Temp. Coeff. for grazing [/degC]
LamP: ZP Ivlev constant [l/molN]
PL2ZPstar: ZP Threshold Value for Grazing PL [molN/l]
ZS2ZPstar: ZP Threshold Value for Grazing ZS [molN/l]
ZL2ZPstar: ZP Threshold Value for Grazing ZL [molN/l]
PusaiPL: ZP Preference Coeff. for PL [l/molN]
PusaiZS: ZP Preference Coeff. for ZS [l/molN]
AlphaZP: ZP Assimilation Efficiency [(nodim)]
BetaZP: ZP Growth Efficiency [(nodim)]
MorZP0: ZP Mortality Rate @0degC [/s]
KMorZP: ZP Temp. Coeff. for Mortality [/degC]
Nit0: NH4 Nitrification Rate @0degC [/s]
KNit: NH4 Temp. coefficient for Nitrification [/degC]
VP2N0: PON eecomp. Rate to Ammonium @0degC [/s]
KP2N: PON Temp. Coeff. for Decomp. to Ammon. [/degC]
VP2D0: PON Decomp. Rate to DON @0degC [/s]
KP2D: PON Temp. Coeff. for Decomp. to DON [/degC]
VD2N0: DON Decomp. Rate to Ammonium @0degC [/s]
KD2N: DON Temp. Coeff. for Decomp. to Ammon. [/degC]
VO2S0: Opal Decomp. Rate to Silicate @0degC [/s]
KO2S: Opal Temp. Coeff. for Decomp.to Silicate [/degC]
RSiN: Si/N ratio [molSi/molN]
RCN: C/N ratio [molC/molN]
setVPON: Settling velocity of PON [m/s]
setVOpal: Settling velocity of Opal [m/s]
TNO3d: Nitrate Concentraion in the Deep Layer [molN/l]
TSiOH4d: Silicate Concentraion in the Deep Layer [molSi/l]
usesteele: logical scalar indicating whether to use Steele (1) or

Platt (0) light curves

Output variables:

Params: 1 x 1 structure with fields corresponding to variables
listed above, with default values if user did not
provide a value via input.

Extra: 1 x 1 structure including any parameter-value pairs
included by the user that are not included in the above
list (used by nemuroflexinput)

B.3.40 nemurokak

See biomodule.m for full syntax details.
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This module runs a lower-trophic level biogeochemical model based on the
NEMURO model. It includes modifications for explicit iron limitation, as
well as options to switch between single-resource and multi-resource
grazing functional responses.

User-specified input variables (passed to mixed_layer as parameter/value
pairs):

NemParam: 1 x 1 structure of nemuro input variables (see
nemuroinputparser.m)

bnem0: nz x 13 array of initial values for each state variables.
Column 1 holds depths (m, negative down) and columns 2-13
correspond to the 12 state variables (mol/m^3):
1: PS 4: ZL 7: NH4 10: SiOH4
2: PL 5: ZP 8: PON 11: Opal
3: ZS 6: NO3 9: DON 12: Fe

ivlev: String, specifying which grazing scheme to use [’orig’]
’orig’: single-resource for all except ZP, which has

"gourmet" function
’single’: single-resource for all
’multi’: multi-resource for all

grmax: (ivlev = ’multi’ only) 11 x 1 array, maximum razing rates
for each of the live state variables (with placeholders for
the remaining originals) (/s)

thresh: (ivlev = ’multi’ only) 11 x 1 array, theshold feeding
values for each of the live state variables (mol/m^3)

p: (ivlev = ’multi’ only) 11 x 11 array of prey preference
values, with values ranging from 0-1. 1 indicates the most
preferred prey.

Kfe: 1 x 2 array, half-saturation constants for iron uptake for
small and large phytoplankton, respectively (molFe/m^3)
[6e-7 3e-6]

kfe2n: 1 x 2 array, half-saturation constants for internal Fe:N
ratio for small and large phytoplankton, respectively
(molFe/molN) [[6.625e-05 0.0001325], i.e. [10 20]
umolFe/molC assuming Redfield]

fe2nmax: 1 x 2 array, maximum internal Fe:N ratio for small and
large phytoplankton, respectively (molFe/molN)
[[0.00033125 0.0033125], i.e. [50 500] umolFe/molC assuming
Redfield]

fe2nupfac: scalar, Fe:N uptake ratio (molFe/molN) [100e-6]

ligbkg: Ligand background concentration (mol/m^3) [1.0e-6]

alphascav: Iron scavenging coefficient (s^-1) [1.5855e-06, i.e. 50
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yr^-1]

remineff: Fraction of particulate iron remineralization relative to
organic (N) material (no unit) [0.25]

kiscav: Half-saturation constant for light’s influence on ligand
binding (W/m^2) [1.0]

kliglo: Lower limit of ligand binding under low-light conditions
(m^3/mol) [3.0e8]

klighi: Upper limit of ligand binding under high-light conditions
(m^3/mol) [1.0e5]

reroute: n x 5 cell array. This allows you to reroute fluxes from
the original path defined in the nemuro model. Each row
desribes as change, with column as follows:
col 1: name of flux (gpp, gra, pre, res, exx, exc, ege,

mor, dec)
col 2: name of original source group
col 3: name of original sink group
col 4: name of new sink group
col 5: fraction of flux to reroute

odesolver: cell array of strings, indicating which solvers to use. If
the first one fails to integrate a timestep (i.e. causes
something to become negative, NaN, or Inf), the next one is
tried. See integratebio.m for choices. [{’euler’}]

B.3.41 nemurokakode

[db, Flx, Diag] = nemurokakode(time, bio, A)

Source/sink ODE function for the nemurokak biological module. See
biomodules/nemurokak.m for details; this function is designed to be
called by ODE solvers.

B.3.42 nemvarnames

vars = nemvarnames
vars = nemvarnames(’long’)
vars = nemvarnames(’iron’)

Yes, I am that lazy

Input variables:

’long’: Return long names (e.g. ’Small Phytoplankton’ as opposed to
’PS’)
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’iron’: Include the iron-related that I added to the original 11
variables.

Output variables:

vars: {’PS’,’PL’,’ZS’,’ZL’,’ZP’,’NO3’,’NH4’,’PON’,’DON’,’SiOH4’,
’Opal’}, or a variation on that theme.

B.3.43 np

See biomodule.m for full syntax details.

This module adds a simple nutrient-phytoplankton model to the
mixed_layer model. The model is based on the NP model described in
Sarmiento and Gruber (2008) Chapter 4, where

dP/dt = P * (Vmax * N/(Kn + N) - lambdap)
dN/dt = P * (-Vmax * N/(Kn + N) + mup * lambdap)

The maximum growth rate Vmax is determined by temperature and light
limitation, following Eppley (1972) and Platt and Jasby (1976),
respectively. The half-saturation constant (Kn), loss rate (lambdap),
and fraction of remineralization (mup) are provided by the user.

User-specified input variables (passed to mixed_layer as parameter/value
pairs)

n: n x 2 depth profile of initial nutrients, where column 1 gives
the depth values (negative down) and column 2 holds the
concentrations of nutrients (mmol N m^-3)

p: n x 2 depth profile of phytoplankton, where column 1 gives the
depth values (negative down) and column 2 holds the
concentrations of phytoplankton (mmol N m^-3)

kn: half-saturation for nutrient uptake by phytoplankton (mmol N
m^-3)

loss: loss rate for phytoplankton (s^-1)

remin: fraction of phytoplankton loss that is remineralized

B.3.44 npz

See biomodule.m for full syntax details.

This module adds a simple nutrient-phytoplankton-zooplankton model to
the mixed_layer model. The model is based on the NPZ model described
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in Sarmiento and Gruber (2008) Chapter 4, where

dZ/dt = Z * (gammaz * g * P/(Kp + P) - lambdaz)
dP/dt = P * (Vmax * N/(Kn + N) - lambdap - g*Z/(Kp + P))
dN/dt = P * (-Vmax * N/(Kn + N) + mup * lambdap) +

Z * muz * ((1 - gammaz) * g * P/(Kp + P) + lambdaz)

The maximum growth rate Vmax is determined by temperature and light
limitation, following Eppley (1972) and Platt and Jasby (1976),
respectively. The half-saturation constants (Kn, Kp), loss rates
(lambdap, lambdaz), and fractions of remineralization (mup, muz) are
provided by the user.

User-specified input variables (passed to mixed_layer as parameter/value
pairs)

n: n x 2 depth profile of initial nutrients, where column 1
gives the depth values (negative down) and column 2 holds
the concentrations of nutrients (mmol N m^-3)

p: n x 2 depth profile of phytoplankton, where column 1 gives
the depth values (negative down) and column 2 holds the
concentrations of phytoplankton (mmol N m^-3)

z: n x 2 depth profile of zooplankton, where column 1 gives
the depth values (negative down) and column 2 holds the
concentrations of zooplankton (mmol N m^-3)

kn: half-saturation for nutrient uptake by phytoplankton (mmol
N m^-3)

kp: half-saturation for phytoplankton uptake by zooplankton
(mmol N m^-3)

lambdap: loss rate for phytoplankton (s^-1)

lambdaz: loss rate for zooplankton (s^-1)

mup: fraction of phytoplankton loss that is remineralized

muz: fraction of zooplankton loss that is remineralized

g: maximum zooplankton growth rate (s^-1)

gammaz: zooplankton assimilation efficiency (0-1)

B.3.45 npzd

See biomodule.m for full syntax details.

This module adds a nutrient-phytoplankton-zooplankton-detritus model.
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The dynamics for phytoplankton and zooplankton growth are the same as
the NPZ model. Egestion and mortality go to a detritus pool, which is
remineralized at a constant rate to the nutrient pool. Excretion goes
directly to the nutrient pool.

User-specified input variables (passed to mixed_layer as parameter/value
pairs)

n: n x 2 depth profile of initial nutrients, where column 1
gives the depth values (negative down) and column 2 holds
the concentrations of nutrients (mmol N m^-3)

p: n x 2 depth profile of phytoplankton, where column 1 gives
the depth values (negative down) and column 2 holds the
concentrations of phytoplankton (mmol N m^-3)

z: n x 2 depth profile of zooplankton, where column 1 gives
the depth values (negative down) and column 2 holds the
concentrations of zooplankton (mmol N m^-3)

d: n x 2 depth profile of detritus, where column 1 gives the
depth values (negative down) and column 2 holds the
concentrations of detritus (mmol N m^-3)

kn: half-saturation for nutrient uptake by phytoplankton (mmol
N m^-3)

kp: half-saturation for phytoplankton uptake by zooplankton
(mmol N m^-3)

lambdap: loss rate for phytoplankton (s^-1)

lambdaz: loss rate for zooplankton (s^-1)

g: maximum zooplankton growth rate (s^-1)

gammaz: zooplankton assimilation efficiency (0-1)

dsink: detritus sinking velocity, negative (m/s)

kremin: remineralization rate constant (s^-1)

egestz: fraction of zooplankton ingestion that is egested

B.3.46 ode4splitsnonneg

[y, dy, Splits, Diag, failflag] = ode4splits(odefun,tspan,y0,p1, p2, ...)

This function extends the ode4 function to calculate diagnostic variables
and additive components as the ODE is solved. For the additive
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components aspect, I assume that the ODE function is of the form dy/dt =
dy1 + dy2 + dy3 + .... This is particularly designed for biological
modules in mixed_layer, where the total change is a sum of processes
(production, grazing, predation loss, etc).

Input variables:

odefun: function handle to ode, of form [db,Splitdb,Diag] =
fun(t,b,P)

tspan: vector of time steps to integrate over

y0: vector or 2D array of initial conditions

p#: additional parameters to pass to the ODE function

Output variables:

y: new values at each time step

dy: dy/dt over each time step

Splits: structure of dy additive components at each time step

Diag: structure of diagnostic variables at each time step

failflag: true if any component becomes negative within the
Runge-Kutta calculations.

B.3.47 odewrap

[t,y] = odewrap(solver, fun, tspan, y0)
[t,y] = odewrap(solver, fun, tspan, y0, options)
[t,y] = odewrap(solver, fun, tspan, y0, options, in1, in2, ...)
[t,y] = odewrap(solver, fun, tspan, y0, [], in1, in2, ...)
[t,y, dy, out1, out2, ...] = odewrap(...)

This function is a wrapper for Matlab’s ODE solvers. It adds the
flexibility of allowing the solvers to evaluate functions of the form

[dydt, out1, out2, ...] = odefun(t, y, in1, in2, ...),

where both y and dydt can be matrices rather than vectors. It can be
used to run any of the variable-step solvers provided with Matlab, as
well as the fixed-step solvers that can downloaded from the Mathworks
website (see "Tech Note 1510: Differential Equations in Matlab").

This function is not intended to support systems that require mass matrix
or Jacobian properties, or those that utilize Events.

Input variables:
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solver: function handle to ODE solver

fun: function handle that evaluates the differential equation.
This function should be of the form dydt = fun(t, y), where
t is a scalar time value, and y and dydt are matrices of
identical size. See params input to pass additional input
to the differential equation.

tspan: vector specifying interval of differentiation. If a
variable-step solver is used and tspan includes two
elements [t0 tf], the solver returns the solution evaluated
at every integration step. Otherwise, a solution will be
returned at each specified time value. For fixed-step
solvers, values will only be returned at the specified
values, regardless of the length of tspan.

y0: matrix of initial conditions.

options: structure of optional parameters that change the default
integration properties. Only applicable to variable-step
solvers (use empty array if you need to pass additional
parameters to a fixed-step solver). This function is not
designed to solve systems where mass matrix or Jacobian
properties are needed. Those properties may work, but if
so it is by accident.

in#: additional parameters required by fun. These can be any
size or data type, depending on the specific function being
evaluated. Parameters are held constant throughout the
integration time span.

Output variables:

t: vector of times values corresponding to solution

y: array of solutions. This will be a length(t) x size(y0)
array.

dy: array of dy/dt values at each of the solution times

out#: additional output variables returned by the differential
equation function. These may be any size or data type,
depending of the specific function being evaluated.

B.3.48 parseinput
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B.3.49 parsepv

NewParam = parsepv(Param, pvpairs)
[NewParam, extra] = parsepv(Param, pvpairs, ’returnextra’)

This function is an extension of parse_pv_pairs. It allows the option of
returning unrecognized parameter/value pairs, rather than erroring.

Input variables:

Param: 1 x 1 structure holding default parameters (fieldnames)
and values

pvpairs: 1 x n cell array of parameter/value pairs

’returnextra’: if this string is included, the function will return a
cell array holding any unrecognized parameters and the
corresponding values. Otherwise, it will error if a
parameter is not recognized.

Output variables:

NewParam: 1 x 1 struct identical to Param but with defaults
replaced by the values from pvpairs

extra: 1 x m cell array of any unrecognized parameter/value
pairs

B.3.50 photosynthesis

ps = photosynthesis(nutrients, phyto, kn, z, irr, temp, dz)

Using photosynthesis model from Sarmiento and Gruber 2006, Chapter 4.
Net uptake and assimilation of nitrogen is defined as Vp(T)*gammap(I,N),
where Vp(T) is the maximum temperature-dependant growth rate (time^-1),
and gammap(I,N) is a value between 0 and 1 that describes the limitation
of growth due to light and nutrients.

Input variables:

phyto: ndepth x np, concentration of producers (mmol N m^-3)

nutrients: ndepth x 1, concentration of nutrients (mmol N m^-3)

kn: 1 x np, half-saturation constants for each producer (mmol N
m^-3)

z: ndepth x 1, depths (m, positive down)
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irr: mean irradiance at surface (W m^-2)

dz: ndepth x 1 or 1 x 1 array, thickness of each layer (m)

Output variables:

ps: ndepth x np, nutrient uptake rate (or rate of accumulation
of biomass due to photosynthesis) per unit biomass of
producer (s^-1)

B.3.51 plotmixed

h = plotmixed(file, field1, field2, ...)
h = plotmixed(file, splitdepth, ...)

Input variables:

file: mixed_layer output file

field: output variables to be plotted, corresponding to a variable
names in the output file, or an arbitrary matrix of size
ndepth x ntime, ndepth+1 x ntime, or 1 x ntime.

splitdepth: depth to separate surface and deep layers. The surface
layers will be displayed in the upper quarter of the
figure; the bottom layers in the lower three quarters.

Output variables:

h: structure with handles to figures and axes

B.3.52 readmixed

Data = readmixed(file)
Data = readmixed(file, ’var1’, ’var2’, ...)
Data = readmixed(file, Opt, ’var1’, ’var2’, ...)
readmixed(file, ’list’)

Input variables:

file: name of output netcdf file (with or without .nc extension)

var#: name of variables to be read. If not included, all
variables will be read. If the string ’dimensions’ is
included, this corresponds to all the dimensional
variables: ’depth’, ’depth_edge’, ’startdate’, ’middate’,
’enddate’.
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Opt: 1 x 1 one structure holding options for reading and
averaging data:

tstart: date number corresponding to earliest value to
read in time dimension. If NaN, will read from
beginning. [NaN]

tend: date number corresponding to latest value to
read in time dimension. If NaN, data will be
read to end of time dimension. [NaN]

tstride: sampling interval (stride) along time
dimension. [1]

tbin: Bin edges, as in histc. Data will be averaged
over each bin. Sampling based on above
parameters will be done prior to averaging.

monthavg: True indicates to average data over each month
(a shortcut to listing months as tbin).
Sampling based on above paramters will be done
prior to averaging. [false]

tmid: Values of the ’middate’ variable in the file.
If you’re doing multiple reads of a large file
using tstart or tend, it can speed things up if
readmixed doesn’t need to read in this variable
each time to analyze where to start and stop.

surfonly: Only read the surface depth values, i.e. first
cell in the depth dimension [false]

’list’: When called with just the file name and this string, this
will simply list the names and dimensions of all variables
in the file.

Output variables:

Data: 1 x 1 structure holding data from specified file. Field
names correspond to variable names.

B.3.53 recovercrashed

recovercrashed(varargin)

This function recovers the data from a crashed mixed_layer run. It
assumes that the crashed one was the most recently run mixed_layer
simulation, and that the mltemp.bin and mltemp.mat files in the current
directory are associated with it.

Run with the same input as was used for mixed_layer.
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B.3.54 regexpfound

found = regexpfound(str, expression);
found = regexpfound(cells, expression);

This function returns a logical array indicating whether the expression
was found in the input string or cell array. It acts similar to regexp
but with output of a logical array rather than the typical cell array.

Input variables:

str: vector character array

cells: cell array of strings

expression: regular expression to match

Output variables:

found: logical array same size as cells (1 x 1 if input was a
string), true if expression was found 1 or more times in
the string

B.3.55 runmixedlayer

runmixedlayer(In, name, usepar, nlabs, folder, p1, v1, ...)

This function runs mixed_layer for multiple input sets. It provides a
log file to note any errors. It will skip over any sets where it finds
an existing file of the specified name, so can be used to complete
partly-run ensembles.

Input variables:

In: n x 1 structure holding mixed_layer input fields. Each
structure element corresponds to one set of input
variables.

name: base name for run. A folder with this name will be placed
under the folder specified below, and will contain the
logfile name.log as well as all .nc files produced by the
run.

folder: location where new results folder will be placed (new
folder will will be names <folder>/<name>/

usepar: true to run simulations in parallel via matlabpool and
parfor, false to run one at a time
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nlabs: number of labs to run if running in parallel

p#/v#: any additional mixed_layer input variables that will be
applied to all runs, passed as parameter/value pairs

B.3.56 sh2dewpoint

dp = sh2dewpoint(sh, p, t)

Calculations are as follows:

pH20 = SH * mr <-- relationship between mole
fraction and partial pressure

es = A * exp(beta * T) <-- simplified Clausius-Clapeyron
RH = pH20/es * 100 <-- definition of relative humidity
gamma = a.*T./(b + T) + log(RH);
Td = (b .* gamma)./(a - gamma); <-- August-Roche-Magnus

approximation

where pH20 = partial pressure of water vapor
SH = specific humidity
mr = mole ratio of water to dry air (18.015/28.97)
es = staturation vapor pressure (Pa)
A = 611 Pa
beta = 0.067 deg C
RH = relative humidity
T = temperature (deg C)
a = 17.271
b = 237.7 deg C
Td = dewpoint temperature (deg C)

Valid for 0 degC < T < 60 degC, 1% < RH < 100%, 0 degC < Td < 50 degC

Input variables:

sh: specific humidity (g H20/g air)

p: pressure (Pa)

t: temperature (deg C)

Output variables:

dp: dewpoint temperature (deg C)

B.3.57 solve_velocities

velocity values
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newvel = solve_velocities(oldvel, mixcoef, dt, dz,cor,pgx,pgy, ...
sbc,bbc,bottomval,source, dissipate)

The routine uses a semi-implicit Crank-Nicolson scheme to solve:

du/dt = fv + d/dz(K*du/dz) - pgx - eps*u
dv/dt = -fu + d/dz(K*dv/dz) - pgy - eps*v

Where u and v are the velocities, f is the coriolis parameter, K is a
mixing coefficient, pgx and pgy are pressure gradients in the x and y
directions respectively, and eps is a dissipation term that mimics the
horizontal divergence.

Input variables (n = number of vertical layers)

oldvel: 2n x 1 array of velocities at each depth at the current
time step, first n entries are u values, next n entries are
v values (m s^-1)

mixcoef: n x 1 array, mixing coefficient for tracer at each depth
(m^2 s^-1)

dt: time increment (s)

dz: depth increment (m)

cor: coriolis parameter (s^-1)

pgx: pressure acceleration in the x direction (m s^-2)

pgy: pressure acceleration in the y direction (m s^-2)

Optional input variables (passed as parameter/value pairs):

sflux: "velocity flux" i.e., momentum flux/density, into the
top depth bin = 1/dz(1) * K * du/dz (m s^-2)

bflux: "velocity flux" i.e., momentum flux/density, into the top
depth bin = 1/dz(1) * K * du/dz (m s^-2)

sval: velocity value at the surface, used to force the surface
grid cell (m/s)

bval: velocity value along the bottom, used to force the bottom
grid cell (m/s)

source: n x 1 array, source (or sink) flux of tracer at each grid
cell (m s^-2)

dissipate: dissipation constant (s^-1)

Output variables:

newvel: n x 1 array, tracer concentrations at next time step
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(tracer unit)

Local variables:

theta: Numerical parameter determining the relative weighting of
future versus present conditions in the numerical
calculation. A value of 0 is an explicit scheme, a value
of 1 is a fully implicit scheme, the default value of 0.5
is the Crank-Nicolson scheme, which offers a robust blend
of stability and accuracy.

dtheta: Added this parameter to control the relative weighting of
future versus present conditions for the diffusive step.

B.3.58 sortewein

[New, isrt] = sortewein(Ewein)

This function rearranges the groups in a Ewe input structure so that they
are in descending order by trophic level (and also makes sure detritus
groups are listed last).

Input variables:

Ewein: Ewe input structure

Output variables

New: Ewein input structure with groups sorted by trophic level

isrt: index vector showing old positions of new groups, such that
old(isrt) = new

B.3.59 suplabel

[h1, h2, ...] = suplabel(param, val, ...)

This function adds a title, xlabel, and/or ylabel to a group of axes.

Input variables:

figure: handle of figure where axes are located. This is ignored
if specific axes handles are given. Default is current
figure.

axes: handles(s) of axes that will be labeled. If omitted, all
visible axes in the specified figure (or current figure if
no figure is specified) are used.
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title: title string

xlabel: xlabel string

ylabel: ylabel string

buffert: distance (normalized) between title string and top of axes
[0.02].

bufferx: distance (normalized) between xlabel string and bottom of
axes [0.05]

buffery: distance (normalized) between ylabel string and left of
axes [0.05]

Output variables:

h: handles to labels added, in order listed in input. If one
extra handle is requested (e.g. listed 2 label types but
you ask for 3 output variables), the handle to the axis
used to position the labels will be returned as well (this
axis is always an invisible axis with normalized position
[0 0 1 1]).

B.3.60 tracer

See biomodule.m for full syntax details.

This module adds a simple tracer variable to the mixed_layer model. The
tracer has no sources or sinks.

User-specified input variables (passed to mixed_layer as parameter/value
pairs):

tracer: n x 2 depth profile of tracer, where column 1 gives the depth
values (negative down) and column 2 holds the initial
concentrations of a generic tracer (mmol m^-3)

B.3.61 tracerforced

See biomodule.m for full syntax details.

This module adds a single tracer variable to the mixed_layer model.
The tracer has no sources or sinks, but is forced during mixing so that
the bottom grid cell maintains the same tracer concentration as was
supplied in the initial profile.

User-specified input variables (passed to mixed_layer as parameter/value
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pairs):

tracer: n x 2 depth profile of tracer, where column 1 gives the depth
values (negative down) and column 2 holds the initial
concentrations of a generic tracer (mmol m^-3)

B.3.62 trophiclevel

level = trophiclevel(dc, pp, nlive, ngroup)
level = trophiclevel(A)

This function calculates the trophic levels of each member of a food web,
based on their diets and whether they are primary producers/detrital.
The calculations derive from EstimateTrophicLevels in the EwE model.
Primary producers and detrital groups receive a trophic level of 1, while
consumers are assigned 1 + w, where w is the weighted average of their
prey’s trophic levels.

Input variables:

dc: ngroup x ngroup array, diet composition, dc(i,j) tells fraction
of predator j’s diet consisting of prey i

pp: ngroup x 1 array, 1 = is primary producer, 0 = is not primary
producer, 2 = is detrital

nlive: scalar, number of live, non-detrital groups

ngroup: scalar, number of functional groups in model

Output variables:

level: ngroup x 1 array, trophic levels of each functional group

B.3.63 verticalflux

newtracer = verticalflux(tracer, wsink, dt, dz, openbot)

Calculated changes in tracer concentration due to non-mixing processes.

Input variables:

tracer: nz x 1 array, concentration of tracer

wsink: nz x 1 array, vertical velocities (m/s)

dt: scalar, model time step (s)

dz: scalar, depth interval (m)
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openbot: logical scalar, true if open bottom (i.e. things sink out)

Output variables:

newtracer: nz x 1 array, new value of tracer concentrations after one
time step

B.3.64 wce

See biomodule.m for full syntax details.

This module simulates a mixed planktonic-nektonic ecosystem, based on
a combination of models derived mainly from NEMURO and Kerim Aydin’s
version of Ecosim, with a little bit of COBALT thrown in for flavor.

A note on units: The biomass of all critters is saved to file in mol
N[Si][Fe]/m^3. For nektonic critters, all biomass is placed in the
surface cell, and actually represents the total over the entire water
column; multiply by the thickness of the surface layer to get the true
biomass, in mol N/m^2.

User-specified input variables (passed to mixed_layer as parameter/value
pairs):

Ewein: 1 x 1 Ewe input structure. Must include all ecopath fields
(see ecopathlite) in units of mol N/m^2/s, as well as the
following fields:

x: Vulnerability parameter. Can be either a ngroup x
1 vector of log-transformed anomaly-from-base
values (same as P4/P5 inputs in aydin-ecosim, range
from -Inf to Inf w/ default of 0, xi in equation
below), or an ngroup x ngroup array of
non-tranformed values for each predator-prey pair
(range from 1 to Inf w/ default of 2, Xij in
equation below).

Xij = exp(xi + xj) + 1

d: Handling time parameter, same format as x.

theta: Switching parameter. Same format as x but with
slightly different transform

THij = exp(0.5 * (thi + thj))

TH = 1 yields a type 2 functional response
TH = 2 yields a type 3 functional response

NemParam: 1 x 1 structure of NEMURO parameters (see
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nemuroinputparser)

types: ngroup x 1 cell array of strings, indicating what type of
critter each functional group is.
’n’: nekton, not affected by physical mixing, feed over

entire water column
’z’: zooplankton, mixed, feed only in the layer where

they are located
Can also be any of the 11 nemuro state variables (’ps’,
’pl’, ’zs’, ’zl’, ’zp’, ’no3’, ’nh4’, ’pon’, ’don’,
’sioh4’, ’opal’), all of which are planktonic.

bnem0: n x 12 array. Column 1 holds depth values (m, negative
down) and the remaining columns hold the initial biomass
values for nemuro-derived variables (mol/l). Currently
only the non-living profiles are used, but the entire
matrix is used as input for consistency with the NEMURO
module.

nomix: logical scalar, if true bioligcal variables are not subject
to mixing (for debugging purposes) [false]

ecosimpp: logical scalar, if true ecosim primary production function
is used, decoupling biology from nutrient constraints (for
debuging purposes) [false]

mld: mixed layer depth, used for initial plankton distributions
and per-area-to-per-volume rate conversions (m, negative
down) [-50]

temp: temperature associated with initial mass-balanced values,
used for grazing functional response (deg C) [0]

kgra: nexz x 1 array, temperature coefficient associated with
non-nemuro zooplankton groups (i.e. those with type ’z’).
Default is 0.0693 deg C^-1 for all, i.e. a Q10 of 2.

Kfe: 1 x 2 array, half-saturation constants for iron uptake for
small and large phytoplankton, respectively (molFe/m^3)
[6e-7 3e-6]

kfe2n: 1 x 2 array, half-saturation constants for internal Fe:N
ratio for small and large phytoplankton, respectively
(molFe/molN) [[6.625e-05 0.0001325], i.e. [10 20]
umolFe/molC assuming Redfield]

fe2nmax: 1 x 2 array, maximum internal Fe:N ratio for small and
large phytoplankton, respectively (molFe/molN)
[[0.00033125 0.0033125], i.e. [50 500] umolFe/molC assuming
Redfield]

fe2nupfac: scalar, Fe:N uptake ratio (molFe/molN) [100e-6]

ligbkg: Ligand background concentration (mol/m^3) [1.0e-6]
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alphascav: Iron scavenging coefficient (s^-1) [1.5855e-06, i.e. 50
yr^-1]

remineff: Fraction of particulate iron remineralization relative to
organic (N) material (no unit) [0.25]

kiscav: Half-saturation constant for light’s influence on ligand
binding (W/m^2) [1.0]

kliglo: Lower limit of ligand binding under low-light conditions
(m^3/mol) [3.0e8]

klighi: Upper limit of ligand binding under high-light conditions
(m^3/mol) [1.0e5]

m0exp: Exponent for mortality function, of form M0 = aB^(m0exp). A
value of 1 leads to linear mortality and 2 to quadratic
mortality. Can also be a nlive x 1 array of values to allow
different functions for each critter.[2]

reroute: n x 5 cell array. This allows you to reroute fluxes from
the original path defined in the nemuro model. Each row
desribes as change, with column as follows:
col 1: name of flux (gpp, gra, pre, res, exx, exc, ege,

mor, dec)
col 2: name of original source group
col 3: name of original sink group
col 4: name of new sink group
col 5: fraction of flux to reroute

odesolver: cell array of strings, indicating which solvers to use. If
the first one fails to integrate a timestep (i.e. causes
something to become negative, NaN, or Inf), the next one is
tried. See integratebio.m for choices. [{’euler’}]

B.3.65 wceode

[db, Flx, Diag] = wceode(time, bio, A)

Source/sink ODE function for wce module. See biomodules/wce for details;
this function is designed to be called by ODE solvers.
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